Clair-Maltby Transform. Connect. Community.

Clair-Maltby Comprehensive Environmental Impact Study, Year 1 Monitoring Report

> Prepared by: Amec Foster Wheeler

EXECUTIVE SUMMARY

To understand and assess the area's unique natural heritage character a three (3) year monitoring program (2016-2018) was developed as part of the Comprehensive Environmental Impact Study (CEIS). The monitoring program is being conducted to supplement the available data from existing studies and reports and instrumentation.

The surface water monitoring program was initiated in mid-July 2016 and ended in late November 2016. The monitoring included a rainfall gauge at the Guelph Building Supply on the roof of the Guelph Home Building Supply, located at 500 Maltby Road East (ref. Figure 7). Continuous surface water levels Stations 9A - Kilkenny Place and 9B - Serena Lane) were tested in July of 2016 to monitor the discharge from the Hanlon Creek Subwatershed, draining to the north, with no flow recorded. Continuous surface water levels in Halls Pond (Station 7) and in the Puslinch Channel (Station 14) have been recorded (ref. Figure 7). The Halls Pond water levels receded in September resulting in no water levels being recorded. The Puslinch Channel is groundwater fed, as such it had continual flow throughout the 2016 monitoring year.

The continuous surface water level loggers have been used to record water quality (temperature) for Halls Pond and the Puslinch Channel, although due to water levels in Halls Pond receding, temperatures were not recorded for the fall months. The Puslinch Channel water temperature was always below 25°C, which is within the coldwater fishery temperature range. Grab water quality sampling for one (1) dry event and three (3) wet evens was also conducted at Station 7 (Hanlon Creek) and Station 14. PWQO Guidelines were exceeded for Total Phosphorous, Ammonia and Iron at both stations, while Station 14 also had exceedances for Zinc.

A comprehensive groundwater monitoring program was initiated in 2016, including:

- Downhole Geophysical Logging
- Drive Point Mini Piezometer Installations
- Groundwater Level Monitoring
- Groundwater Quality Sampling
- Borehole Drilling and Monitoring Well Single Well Hydraulic Response Testing Installations
- Guelph Permeameter Testing
- Surface Water Spot Flow Measurements
- Pond Bathymetry Surveys
- Seeps and Springs Observations

In total, 17 boreholes at 9 locations were advanced and all boreholes were completed as monitoring wells. A total of 18 drive point mini piezometers were installed at 14 locations identified as areas of potential groundwater – surface water interaction (Figure 3). Groundwater quality sampling has been conducted at all monitoring wells.

The Year 1, 2016 field assessments have provided insight into the study area characterization and have provided the understanding required for any of the proposed monitoring modifications for Year 2, 2017 for the various disciplines. The Year 2 (2017) program will include revised surface water monitoring locations and the bulk of the natural heritage monitoring.

TABLE OF CONTENTS

PAGE

1.0	INTRODUCTION1							
2.0	DEFINING THE STUDY AREAS							
3.0	PROF	PERTY AC	CESS	3				
4.0	MON		SUMMARY (INCLUDE MAPS)	4				
	4.1	Surface	Water / Rainfall	4				
		4.1.1	Rainfall	4				
		4.1.2	Surface Water	6				
	4.2	Ground	Water					
		4.2.1	Borehole Drilling and Monitoring Well Installation					
		4.2.2	Downhole Geophysical Logging					
		4.2.3	Drive Point Mini Piezometer Installations					
		4.2.4	Groundwater Level Monitoring					
		4.2.5	Groundwater Quality Sampling					
		4.2.6	Enriched Tritium Analyses					
		4.2.7	Single Well Hydraulic Response Testing					
		4.2.8	Guelph Permeameter Testing					
		4.2.9	Surface Water Spot Flow Measurements					
		4.2.10	Pond Bathymetry Surveys					
		4.2.11	Seeps and Springs Observations					
	4.3	Wetland	S					
5.0	OVERVIEW OF PROPOSED 2017 MONITORING							
	5.1	Groundv	vater Error! Bookmar	k not defined.				
6.0	REFE							

TABLE OF CONTENTS (cont'd)

LIST OF TABLES

- Table 4.1.1
 Monthly Precipitation Totals for 2016 and Climate Normals (mm)
- Table 4.1.2
 Summary of Daily Rainfall Totals for Major Rainfall Events of 2016 (mm)
- Table 4.1.3Estimated Peak Flows for Major Storm Events Based on 2016 Rating
Curves (m³/s)
- Table 4.1.4Estimated Peak Flows at Monitoring Station 14 (Hammersley Road)
for Major Storm Events Based on 2016 Rating Curves
- Table 4.1.5
 Observed 2016 Water Temperatures Puslinch Channel (Station 14)
- Table 4.1.6Observed 2016 Water Temperatures Halls Pond
- Table 4.1.7
 Water Quality Parameters Agreed to in the Original Work Plan
- Table 4.1.8 Summary of 2016 Water Quality Sampling Events
- Table 4.1.9
 Comparison of Measured Concentrations for Key Water Quality

 Parameters
 Parameters
- Table 4.1.10
 Comparison of Field Measured Parameters
- Table 4.1.11:
 Summary of PWQO Exceedances for the 2016 Monitoring Program

LIST OF FIGURES

- Figure 1 Study Area Plan
- Figure 2 Access
- Figure 3 Hydrogeology Monitoring Location Regional Extent
- Figure 4 Surface Water Spotflow Results
- Figure 5 Pond Bathymetry
- Figure 6 Unnamed Pond Depth Profiles 950 Southgate Drive
- Figure 7 Surface Water Monitoring
- Figure 8 Available Natural Heritage Data
- Figure 9 Wild Life Monitoring

LIST OF APPENDICES

Appendix A: Surface Water

Appendix B: Groundwater

Amec Foster Wheeler Environment & Infrastructure is committed to achieving sustainability through balancing economic growth, social responsibility and environmental protection. Learn more at: http://amecfw.com/aboutus/sustainability.htm.

Clair-Maltby Comprehensive Environmental Impact Study Year 1 Monitoring Report City of Guelph March, 2017

1.0 INTRODUCTION

The City of Guelph is undertaking the Clair-Maltby Master Environmental Servicing Plan (MESP) and Clair-Maltby Secondary Plan (CMSP) Study to plan on a comprehensive basis the last unplanned greenfield area in the City - the Clair-Maltby Secondary Planning Area. The MESP is intended to satisfy and fulfill the requirements of the Environmental Assessment Act and the Planning Act. A key part of the Clair-Maltby MESP and Secondary Plan process is the Comprehensive Environmental Impact Study (CEIS) and MESP technical studies being conducted by Amec Foster Wheeler with support from Matrix and Beacon.

Protection of the Paris Moraine, its associated functions, and the unique area natural heritage character, presents unique challenges and opportunities. To understand and assess the area's unique natural heritage character a three (3) year monitoring program (2016-2018) was developed as part of the CIES. The monitoring program is being conducted to supplement the available data from existing studies and reports and instrumentation.

As part of the monitoring program a range of field assessments commenced as of June 2016 in accordance with the "preliminary" CEIS Work Plan. Preliminary field assessments and monitoring have been undertaken over the summer and fall of 2016 in order to inform the selection and refinement of monitoring locations, and to start data collection for ground and surface water as soon as possible so that three year of water-based monitoring data could be assessed. The 2016 field assessments are described in conjunction with the proposed monitoring for 2017 and 2018 for the various disciplines. As discussed with City staff in the context of the updates to the CEIS Work Plan, minor refinements to the field assessments initiated in 2016 will be made in 2017.

2.0 DEFINING THE STUDY AREAS

Three scales of study area (ref. Figure 1) have been identified for the CEIS, as per the following:

- i. The Secondary Plan Area (SPA): The SPA is the area within which land use change will occur in accordance with an approved Secondary Plan. The SPA includes the lands south of Clair Road East, north of Maltby Road East, west of Victoria Road South, and approximately 1 km east of the Hanlon Expressway in the City of Guelph.
- ii. The Primary Study Area (PSA): The PSA includes the SPA plus a 500 m zone beyond this boundary, allowing for assessment of ecological features and animal movements to and from the SPA.
- iii. The Secondary Study Area (SSA): The SSA includes the PSA plus the receiving systems beyond the Clair-Maltby SPA. This area has been defined based on the area's hydrology and hydrogeology, as well as natural heritage features and functions in the adjacent lands, to ensure that landscape scale connectivity is considered from both a terrestrial and aquatic perspective. The SSA is based on appropriate groundwater and surface water model boundaries, which inherently consider subwatershed boundaries (Mill Creek, Hanlon Creek, Torrance Creek, Irish Creek and Lower Speed River), as well as groundwater flow divides.

Notably, in the fall of 2016 the SPA (and consequently the PSA) were expanded slightly from the SPA in the original Terms of Reference to include the two large ponds / wetlands and associated lands located just south of Clair Road and west of Gordon Street.

3.0 PROPERTY ACCESS

The landowner contact process was initiated in May 2016 with a landowner's information session (held Thursday May 26, 2016) and a subsequent mailout of requests for permission for property access to each of the landowners in the Secondary Plan Area. Permission forms provided options with respect to both the type(s) of filed work that may be permitted, as well as the type(s) of follow-up contact required by the landowner.

To date, different types of access have been provided by a limited number of landowners, as shown in Figure 2. Most of the access that has been provided is for undertaking groundwater monitoring. A few landowners have granted access for surface water and ecological monitoring.

The level of access provided for undertaking surface water and groundwater monitoring (ref. Figures 3, 4 and 7) is considered adequate in terms of both the numbers of stations and their representation across the PSA, to obtain a good understanding of the surface and groundwater dynamics at a level that is appropriate to support an MESP and Secondary Plan.

More limited access has, to date, been provided for various types of ecological monitoring. To compensate for this limited access: (a) more effort is being placed desktop analyses and on integration of data from site-specific studies in the PSA completed over the past decade (ref. Figure 8), as well as other available background, and (b) monitoring stations have been shifted as needed to suitable locations on public lands (including roadside stations) or lands where access has been granted (see Figures 8 and 9). Given the scale of the SPA, and the fact that a Natural Heritage System for the PSA has already been identified based on field work done as part of the City's Natural Heritage Strategy, this approach is considered adequate to inform an MESP and Secondary Plan.

4.0 MONITORING SUMMARY (Include maps)

4.1 Surface Water / Rainfall

The Clair Maltby Secondary Plan Area lies within the headwaters of the Hanlon, Torrance and Mill Creeks. This unique setting, along with the permeable nature of area soils and subsoils, and the predominant hummocky landscape has given rise to a distinct lack of open flowing watercourses. While some depressional features exist, including those associated with roadway infrastructure (i.e. ditches), these tend to be dry with only occasional flowing water conditions. Furthermore, the hummocky topography creates an abundance of inward draining topographic features which have closed drainage resulting in no offsite drainage contributions, while serving to locally recharge the groundwater system, particularly in areas of permeable soils which generally exist across the Secondary Plan area. As such within the SSA there is a lack of open water features and a lack of formal drainage outlets due to the hummocky topography.

The surface water three (3) year monitoring program has been developed with consideration to the lack of surface water features within the SSA. GRCA recommended that a spotflow program for the groundwater field assessment be utilized given the headwater conditions (i.e., small intermittent systems). Based on the need for a full seasonal understanding of the local flow regime, continuous water level monitoring has been conducted to supplement spotflow measurements, coupled with rainfall monitoring.

4.1.1 Rainfall

The City of Guelph and GRCA both have rainfall gauges within their jurisdiction; notwithstanding (ref. Figure 7), an additional rain gauge has been installed for the three (3) year monitoring period in the PSA. The rainfall gauge has been installed (July 14, 2016) on the roof of the Guelph Home Building Supply, located at 500 Maltby Road East (ref. Figure 5). The rain gauge has been installed concurrent with the streamflow monitoring (July 2016 to June 2019). Rainfall data have been downloaded on a monthly basis.

Monthly precipitation (rainfall) data from the Clair-Maltby gauge for the months of August to November 2016 have been summarized in Table 4.1.1 and compared to the monthly totals from Environment Canada's (EC) Elora gauge. The rainfall gauges are approximately 30 km apart which explains the difference in monthly rainfall amounts.

Monthly Rainfall totals for both the Clair-Maltby gauge and the Elora gauge for the months of August to November are 276.4 mm and 371.1 mm, with the 1981-2010 climate normal for the same period being 326.2 mm. As such the Clair-Maltby August to November rainfall total was approximately 15% below normal. It is worth noting that the months of April to June were also considered below normal based on the Elora gauge monthly amounts compared to the monthly climate normal.

Table 4.1.1: Monthly Precipitation Totals for 2016 and Climate Normals (mm)								
Month	2016 Total ^{2.}	1981-2010 Climate Normal ¹ .	Percent Difference ^{2.}					
April	57.8 (NA)	74.5	-22.42% (NA)					
May	57.3 (NA)	82.3	-30.38% (NA)					
June	53.0 (NA)	82.4	-35.68% (NA)					
July	102.4 (NA)	98.6	+3.85% (NA)					
August	152.6 (134.4)	83.9	+81.88% (+60.19%)					
September	77.1 (58.2)	87.8	-12.19% (-33.71%)					
October	85.8 (43.8)	67.4	+27.30% (-35.01%)					
November	55.6 (40)	87.1	-36.17% (-54.08%)					
December	90.1 (NA)	71.2	+26.54% (NA)					
TOTAL	731.7 (NA)	735.2	-0.48% (NA)					

1 From Environment Canada Waterloo Wellington Airport

2 First value is based on Environment Canada's Elora RCS gauge, value in brackets is based on Clair Maltby Project gauge

In addition to the monthly data presented in Table 4.1.1, daily rainfall totals for days with major storm events and high recorded water levels have been summarized in Table 4.1.2 for all data sources (ref. Figure 7) (EC Elora, Clair-Maltby and City of Guelph's Clair Road rainfall gauges). Where storm systems have lasted multiple days, values have been summed. Daily rainfall amounts between the three (3) gauges for most storm events demonstrate fairly consistent rainfall recordings. The City and the Amec Foster Wheeler rainfall gauges recorded storm event totals that are considered reliable, as there is limited deviation in the rainfall amounts, apart for the July 14-15, 2017 event.

Three (3) storm events are above 25 mm and are considered significant. The August 20th event had a duration of 1 hour and 58.6 mm rainfall total, as such it is considered almost a 100 year storm event based on a 1 hour rainfall total of 59.7 mm at the Guelph Turfgrass Institute (Intensity Duration Frequency (IDF) relationship for 1954 to 2003). Using the same IDF relationship the August 25th (1 hour duration) and September 7th (8.5 hours duration) storm events would be a 5 year storm event and just less than a 2 year event respectively.

Table 4.1.2: Summary of Daily Rainfall Totals for Major Rainfall Events of 2016 (mm)								
Day (M/D/Y)	Environment Canada Elora RCS Gauge Total	Amec Foster Wheeler Clair Maltby Project Gauge Total	City of Guelph Clair Road Emergency Services Gauge Total					
07/14/17 - 07/15/17	20.4	13.0	34.0					
07/25/17	36.0	20.0	17.4					
08/05/17	1.0	10.0	7.0					

Table 4.1.2: Summary of Daily Rainfall Totals for Major Rainfall Events of 2016 (mm)							
Day (M/D/Y)	Environment Canada Elora RCS Gauge Total	Amec Foster Wheeler Clair Maltby Project Gauge Total	City of Guelph Clair Road Emergency Services Gauge Total				
08/11/17 - 08/13/17	59.6	21.0	17.2				
08/16/17	24.4	10.6	14.2				
08/19/17 - 08/21/17	25.6	58.6	59.2				
08/25/17 – 08/26/17	30.3	31.8	33.6				
09/07/17 – 09/08/17	41.8	33.6	27.0				
09/17/17 - 09/18/17	10.8	8.8	9.6				
09/26/17	8.6	6.2	7.2				
09/29/17 - 09/30/17	0	7.4	9.6				
10/08/17	3.3	8.0	5.2				
10/20/17 – 10/21/17	19.4	16.2	16.4				
11/02/17 – 11/03/17	NA	8.6	NA				
11/19/17	11.5	9.6	NA				
11/24/17 – 11/26/17	10.0	10.4	NA				
11/28/17 – 11/30/17	12.5	9.0	NA				

"NA" indicates that data is not available.

4.1.2 Surface Water

The surface water monitoring consists of both water level and quality monitoring as per the following.

4.1.2.1 Quantity

The location of the surface water monitoring locations are depicted in Figure 7. The location for one (1) gauge to monitor the Mill Creek Subwatershed has been established near the south-east limit of the PSA (Station 14). Two (2) gauge locations (Stations 9A – Kilkenny Place and 9B – Serena Lane) were tested in July of 2016 to monitor the discharge from the Hanlon Creek Subwatershed, draining to the north. Some minor flow responses were observed at the Serena Lane monitoring location for storms on August 20, August 25, and September 7 (ref. plots in in Appendix A). However, the responses were minimal, and not considered to be significant enough to continue the monitoring at this location in 2017. A new location outside the PSA in the Hanlon Creek Subwatershed is being sought in consultation with the City and GRCA for surface water monitoring during 2017.

In the absence of a station with flow in the Hanlon Creek Subwatershed in 2016, one surface water level logger and quality station was established in the southern extent of the large pond within Hall's Pond Provincially Significant Wetland (Station 7) in July 2016, with surface water level and quality data collected over the summer and fall of 2016.

Summary plots showing the observed water levels at Halls Pond for 2016 have been included in Appendix A. Key statistics from the observed data are presented in Table 4.1.3.

Table 4.1.3:Estimated Peak Flows for Major Storm Events Based on 2016 RatiCurves (m³/s)				
Date (M/D/Y)		Puslinch Channel (Station 14)		
Minimum Water Level		0 (dry)		
Maximum V	Vater Level	0.33		

Continuous water level monitoring was conducted for an open watercourse south of the study limits, within the municipality of Puslinch. The site is located on a private property at the end of Hammersely Road (Station 14). The site had a continuously observed flow at all times during the monitoring period, suggesting a potential groundwater flow contribution. Velocity metering was conducted at this site over the course of 2016, which has been used to develop a preliminary rating curve for the site. The rating curve fit has been completed using a simplified HEC-RAS hydraulic model, based on topographic survey data completed by Matrix Solutions on November 4, 2016.

Plots of the developed rating curve, and the resulting recorded flow series at the Hammersley Road site have been included in Appendix A. Peak flows for the major recorded storm events of 2015 are presented in Table 4.1.4.

Table 4.1.4:Estimated Peak Flows at Monitoring Station 14 (Hammersley Road)for Major Storm Events Based on 2016 Rating Curves							
Date (M/D/Y)	Observed Rainfall (mm)	Observed Peak Flow (m³/s)					
7/25/2016	19.2	0.02					
8/20/2016	52.0	0.10					
8/25/2016	24.0	0.06					
9/7/2016	33.6	0.02					
11/2/2016	4.2	0.02					

4.1.2.2 Quality and Temperature

The water level gauges include temperature sensors which provide a continuous scan of water temperature over the monitoring period. Although the gauges were not installed until July, 2016, in the following two years (2017-2018) the gauges will be installed from post-freshet (i.e., late March or early April) to freeze-up (typically late November to early December). Tables 4.1.5 and 4.1.6 summarize the temperature monitoring results for the Puslinch Channel (Station 14) and Halls Pond respectively.

Table 4.1.5:	Observed 20	016 Water Temperatu	res – Puslinch	Channel (Sta	ation 14)	
Month	Monthly	Extremes	Monthly Averages			
	Daily Minimum	Daily Maximum	Daily Minimum	Daily Average	Daily Maximum	
July	9.26	16.06	10.77	12.28	14.33	
August	9.80	18.78	11.22	12.86	14.92	
September	7.90	17.20	10.09	11.38	12.91	
October	4.06	15.05	7.99	9.24	10.47	
November	1.95	11.35	5.28	6.45	7.61	
December	1.55	7.46	3.69	4.30	4.85	

Table 4.1.6:	Observed 2016 Water Temperatures – Halls Pond					
Month	Monthly	Extremes	Monthly Averages			
	Daily Minimum	Daily Maximum	Daily Minimum	Daily Average	Daily Maximum	
July	18.05	28.37	20.74	23.10	25.94	
August	16.14	36.61	19.24	23.76	31.34	
September	N/A	N/A	N/A	N/A	N/A	
October	N/A	N/A	N/A	N/A	N/A	
November	N/A	N/A	N/A	N/A	N/A	
December	N/A	N/A	N/A	N/A	N/A	

The daily minimum and maximum temperature values for Station 14 surface water monitoring station are all below 19°C, which is within the colder water fishery temperature range of < 19 °C. The temperatures within Halls Pond have been above 30 °C which is considered to be a warmwater fishery (>25 °C). In September the temperature gauges became exposed to air due to the water level within the Halls Pond dropping and water temperatures were not recorded until the gauges were removed for the winter. Water temperature graphs have been provided in Appendix A.

In addition to water temperature, the CEIS Work Plan requires water quality sampling as part of the surface water monitoring effort. The water quality parameters recommended by GRCA (ref. Table 4.1.7) have been supplemented by metal and pesticides as agreed to by the City. Grab samples are being collected in both dry and wet periods in the spring, summer and fall at each of the two (2) water gauge locations over the three (3) year monitoring plan (2016-2018). Due to the substantial expense of testing for pesticides, the Consulting Team recommended more targeted testing (i.e., single samples at up to six locations across the PSA in the fall of 2017, rather than three samples annually – spring, summer and fall – at all stations over two years), which has been agreed to by the City..

Water quality sampling has been undertaken in 2016 at Station 7 (in the Hanlon Creek Subwatershed) and Station 14 (in the Mill Creek Subwatershed) over the summer and fall, and an additional station with flows in the Hanlon Creek Subwatershed remains to be established in 2017. In 2017 and 2018, these samples will be collected in conjunction with wetland water quality sample collection (ref. Figure 7).

Table 4.1.7: Water Quality Parameters Agreed to in the Original Work Plan								
Water Quality Parameter	Mechanism of Analysis	Comments						
 Total Suspended Solids (TSS) Total Dissolved Solids (TDS) Orthophosphate (P) Total Phosphorus (TP) Dissolved Sulphate (SO⁴) Dissolved Chloride (Cl) Total Kjeldahl Nitrogen (TKN) Nitrite (NO²) Nitrate (NO³) Ammonia (NH³) 	To be analyzed from grab samples sent to a laboratory	Parameters suggested by GRCA in their comments on the Draft Clair-Maltby MESP Secondary Plan TOR (City of Guelph, 2015a).						
 water temperature 	To be measured continuously by the data logger and verified in situ three times over the season by field staff (with a water quality meter)	Parameter suggested by GRCA in their comments on the Draft Clair-Maltby MESP Secondary Plan TOR (City of Guelph, 2015a).						
▶ pH		Parameters suggested by						
 conductivity, and dissolved oxygen (DO) 	field staff (with a water quality meter)	GRCA in their comments on the Draft Clair-Maltby MESP Secondary Plan TOR (City of Guelph, 2015a).						
 Metals Pesticides* 	To be analyzed from grab samples sent to a laboratory	Additional parameters suggested by the Consulting Team and agreed to by City.						

Table 4.1.8 summarizes the water quality sampling events of 2016. Water quality sampling did not occur during the spring season due to the July 2016 commencement of the surface water monitoring program. The rainfall amounts for the wet weather water quality events are considered to be on the low side (i.e. <15 mm), that said, there were only six (6) rainfall events of 15 mm or

greater during the 2016 monitoring term. For the 2017 monitoring program, an effort should be made to sample wet weather events of greater magnitude.

Table 4.1.8: Summary of 2016 Water Quality Sampling Events							
Date	Sites Sampled	Type of Event	Inter-Event Period (days) ¹	24-Hour Rainfall Total (mm) ^{2.}			
August 4, 2016	Station 7, Station 14	Dry	10	0			
August 17, 2016	Station 7, Station 14	Wet	5	10.6			
September 22, 2016	Station 7, Station 14	Wet	6	6.0			
October 20, 2016	Station 7, Station 14	Wet	12	7.0			

"NA" indicates not applicable (dry weather samples)

1. Between sampling time and end of last event exceeding 5 mm

2. Rainfall depth for 24-hour period prior to sampling

3. Rainfall statistics based on project rainfall gauge

Key water quality parameter concentrations have been provided within Table 4.1.9. Exceedances of the Provincial Water Quality Objectives (PWQO) have been highlighted in yellow. Based on the results in Table 4.1.9, there are limited exceedances (6) of the key water quality parameters for Station 14. Exceedances occur primarily for Ammonia and Zinc, resulting from the groundwater that discharges to the watercourse. Station 7 (Halls Pond) has PWQO exceedances in Total Phosphorous, Ammonia, Aluminium, Iron and Lead, but not Zinc. The wetland feature water levels receded during the months of August to October, which may have contributed to contaminant concentrations increasing over time.

Table 4.1.9: Comparison of Measured Concentrations for Key Water Quality Parameters											
					(Contaminant Cor	ncentration (mg/L)			
Date	Location	TSS	TKN	Total P	Ammonia	Chloride	Aluminum	Copper	Iron	Lead	Zinc
Date	PWQO Guidelines	n/a	n/a	0.03	0.02 ¹	n/a	0.075	0.005 ²	0.3	0.001 ²	0.02
	Station 7	6.8	1.41	0.054	0.028	9.92	0.027	<0.0010	0.371	0.00038	0.0043
August 4, 2010	Station 14	<2.0	0.26	0.0056	<0.02	38.0	<0.010	<0.0010	<0.050	<0.0001	0.0890
August 17, 2016	Station 7	10.7	1.65	0.0742	<0.02	10.1	0.027	<0.0010	0.457	0.00053	0.0032
	Station 14	2.5	<0.15	0.0094	0.043	33.5	<0.010	<0.0010	<0.050	<0.0001	0.0760
Sont 22 2016	Station 7	79.4	2.3	0.173	0.025	12.3	0.263	<0.0010	0.491	0.00207	0.0100
Sept. 22, 2010	Station 14	<2.0	0.21	0.0069	0.032	36.7	<0.010	<0.0010	<0.050	<0.0001	0.0759
October 20, 2016	Station 7	15.8	1.68	0.0743	0.082	12.7	<0.010	<0.0010	<0.050	<0.0001	<0.0030
	Station 14	4.0	0.31	0.0075	0.074	33.6	<0.010	<0.0010	<0.050	<0.0001	<0.0030

1. PWQO is for un-ionized Ammonia

2. PWQO varies with hardness as CaCO₃, value presented is most stringent limit (lead) or based on initial PWQO (copper)

Table 4.1.10 summarizes field measured water quality parameters. Station 14 water temperatures are always below temperatures at Station 7 due to Station 14 being a groundwater fed. The same premise is used to explain that all over parameters in Table 4.1.10 are higher for Station 14 than Station 7.

The number of PWQO exceedances for wall water quality parameters at Station 7 is significantly more than recorded at Station 14 in Table 4.1.11 due to the groundwater fed system at Station 14.

Table 4.1.10:	Comparison of Field	d Measured Parameters					
Date	Air Temperature (deg C)	Location	Field Water Temperature (deg C)	Field Conductivity (mS/cm)	Laboratory Total Dissolved Solids (mg/L)	Field Dissolved Oxygen (mg/L)	Field pH
August 4, 2016	20.0	Station 7	23.01	0.214	178	4.44	7.12
	29.9	Station 14	10.97	0.441	388	13.51	7.52
August 17, 0010	25.4 -	Station 7	23.20	NA	170	2.97	8.13
August 17, 2010		Station 14	12.30	NA	362	10.04	8.71
Sept. 22, 2016	27.6 -	Station 7	19.19	0.272	149	0.95	5.79
		Station 14	12.53	0.474	379	13.30	7.11
October 20, 2016	11.5	Station 7	13.394	NA	153	9.42	6.70
	11.5	Station 14	10.211	NA	350	9.59	7.46

Na. Not available

Table 4.1.11:	Summary of PWQO Exceedances for the 2016 Monitoring Program		
Data	Total Number of PWQO Exceedances by Location		
Dale	Station 7	Station 14	
August 4, 2016	4	1	
August 17, 2016	3	2	
Sept. 22, 2016	5	2	
October 20, 2016	2	1	

4.2 Ground Water

The groundwater field program was designed to support refinements to the existing hydrogeological characterization and establish baseline conditions within the SPA and PSA. An understanding of the three dimensional and time-varying (e.g., seasonal) characteristics of the integrated surface water and groundwater flow systems will be required to support the establishment of Community Structure plans for the SPA. In addition, the field program will contribute to a water balance evaluation of groundwater function, identify constraints and opportunities, and provide monitoring locations that will form part of the long-term monitoring network.

The groundwater field work was coordinated with the work being completed by the other disciplines in recognition of the inter-relationship between the hydrogeological and hydrologic systems, other users of water for anthropogenic needs, and the local ecosystem.

This section provides the methodology used by Matrix Solutions Inc. (Matrix) to complete the 2016 hydrogeological field program. Preliminary results are also provided. Specifically, this field program included:

- Borehole Drilling and Monitoring Well Installations
- Downhole Geophysical Logging
- Drive Point Mini Piezometer Installations
- Groundwater Level Monitoring
- ► Groundwater Quality Sampling
- ► Single Well Hydraulic Response Testing
- ► Guelph Permeameter Testing
- ► Surface Water Spot Flow Measurements
- Pond Bathymetry Surveys
- Seeps and Springs Observations

4.2.1 Borehole Drilling and Monitoring Well Installation

A drilling and well installation program was supervised by Matrix staff between July 25 and August 24, 2016. The installation of monitoring wells was intended to understand the function of the upper aquifer(s), vertical gradients, groundwater flow directions, and to collect water quality samples. Drilling was carried out using a truck-mounted, dual rotary, drill rig operated by Highland Water Well Drilling Inc. (Highland). Ontario One Call was contacted before the start of drilling and

registered utility owners in the area were notified of the upcoming work. Matrix personnel completed a pre-drilling site visit at all proposed drilling locations to meet with landowners (where available) and to look for visual onsite indications of non-registered buried infrastructure. On one agricultural property, two well nests (MW05-S/D and MW06-S/D) were installed near the edge of the field under cultivation. With the agreement of the farmer, crop damage was estimated by measuring the area trampled by drilling equipment during site access and drilling activities. The farmer was compensated for the damaged crop based on the measured area, average yield and market price of the crop.

In total, 17 boreholes at 9 locations were advanced and all boreholes were completed as monitoring wells. The borehole locations were strategically positioned across the study area in a series of three transects trending northwest to southeast with each transect crossing a topographic low through the centre of the transect (Figure 3). At each location, one shallow and one deep 152 mm borehole was drilled side by side and completed as an overburden monitoring well nest; except at MW07, where only one well was completed due to the availability of existing shallow monitoring wells in the area. The target depth for each deep borehole was just above the top of bedrock, which was guided by the City's Tier Three Water Budget Study. At each deep borehole, soil samples were collected from the cuttings cyclone of the drill rig approximately every 1.5 m. Matrix personnel were onsite to record observations on the geologic logs including lithology, texture, colour, moisture and monitoring well completion details. Geologic logs indicating borehole lithology and monitoring well installation details are provided in Appendix B1.

Each monitoring well was completed using a 52 mm diameter slotted (010) screen and solid Schedule 40 PVC pipe. Each monitoring well was completed with a 1.52 m section of screened interval. The annular space between the PVC pipe and the wall of the borehole was backfilled with a sand filter pack to approximately 0.10 to 0.30 m above the top of the screened section and a bentonite based granular and/or grout seal was installed in the remaining annulus to ground surface to prevent downward surface water migration. The monitoring wells were installed with riser pipes extending approximately 0.7 m above ground surface and were covered with a protective 152 mm steel surface casing, well cap and lock. Highland developed each well by airlifting using the air compressor of the drill rig.

Matrix personnel were onsite to monitor the turbidity of the produced water and the overall development of the each well. The ground and top of casing elevations of the newly installed monitoring wells were geodetically surveyed using an RTK rover and total station following installation by Beacon Environmental Ltd. (Beacon). Well marker warning flags were installed at MW02-S, MW02-D, MW09-S, and MW09-D due to their proximity to the road within the right of way (ROW) to protect from potential damage from snow plows. Monitoring well completion data are summarized in Table B1.

Matrix monitoring wells were installed in the following stratigraphic layers:

- MW01-S, MW02-S, MW02-D, MW03-S, MW03-D, MW05-S, MW05-D, MW06-S, MW06-D, MW07-D, MW08-S, MW08-D and MW09-S were completed in primarily sand/gravel to silty sand
- MW01-D, MW04-S, MW04-D, and MW09-D were completed in clayey to sandy silt

4.2.2 Downhole Geophysical Logging

On September 3, 2016, Lotowater Technical Services Inc. (Lotowater) completed downhole gamma logging to help distinguish between clay-rich soils from clay-poor soils and to improve the local stratigraphic interpretation across the transitional ice margin deposits of the Paris Moraine within the study area. The logging was conducted in three monitoring wells to test its utility: MW01-D, MW02-D and MW03-D (Figure 3). The geophysical logs are provided in Appendix B2.

Due to the coarse-grained nature of the soils encountered and the relative lack of clay, the results did not support completing downhole survey in the other six monitoring well locations.

4.2.3 Drive Point Mini Piezometer Installations

In August and September 2016, a total of 18 drive point mini piezometers were installed by Matrix personnel at 14 locations identified as areas of potential groundwater – surface water interaction and where property access was granted (Figure 3). These locations were also coordinated with the wetland surface water quantity and quality stations, as well as flow stations where possible (Figure 7). At four of the locations, pairs of shallow and deep mini piezometers were installed to more closely examine vertical hydraulic gradients. The mini piezometers were constructed using 0.3 m x 20 mm stainless steel drive point tips with steel pipe extensions up to approximately 1.0 m above ground surface. The depth of each piezometer ranged from 0.86 to 2.42 m bgs. Installation details and observed vertical hydraulic gradients are presented in Table B2. The ground and top of casing elevations of the mini piezometers were geodetically surveyed by Beacon following installation.

4.2.4 Groundwater Level Monitoring

Groundwater levels are being monitored at all installed monitoring wells and mini piezometers, as well as three additional, pre-existing wells (MW1-11, MW2-11, and MW3-11) located at 132 Clair Road with the landowner's permission (Figure 3). All wells and piezometers are being monitored using manual measurements every three months and, with the exception of MW1-11 and MW2-11, are all equipped with a Solinst[™] Levelogger Model 3001 non-vented pressure transducer automatically recording every 60 minutes. The pressure transducers were removed from the mini piezometers on December 13, 2016 to protect them from freezing and will be re-installed as early as possible following the spring melt. Data from a Solinst[™] Barologger recording atmospheric pressure at MW02-S is used to correct the water level pressure recordings to gauge pressure. The manual water level is measured at each well and piezometer relative to the top of the PVC/steel pipe using a Solinst[™] electronic water level tape.

Groundwater elevations at each station were calculated by subtracting measured depths to water from the surveyed top of casing/pipe elevations. Manual groundwater levels obtained from the

monitoring wells and mini piezometers since their installation are presented in Tables B1 and B2, respectively. Hydrographs showing automatically recorded seasonal groundwater fluctuations in each monitoring well and mini piezometer outfitted with a pressure transducer are presented in Appendix B3. Hydrographs also display precipitation data from two stations. One station was installed by AMEC Foster-Wheeler as a part of the CEIS, while the second is a Government of Canada climate station located at the Region of Waterloo International Airport (YKF). No hydrographs are available for MP01-S and MP02 as these locations were dry during all site visits in 2016.

4.2.5 Groundwater Quality Sampling

On October 19 to 21, 2016, Matrix personnel conducted groundwater quality sampling at all Matrix monitoring wells. The wells were purged prior to groundwater sampling to obtain samples that represent the water quality in the formation. Matrix personnel purged three casing volumes as per the CCME (1994) method or until dry before collecting groundwater samples using dedicated inertial lift Waterra[™] sampling pumps or dedicated Waterra[™] bailers.

Field-measured parameters including pH, EC, temperature, dissolved oxygen and turbidity were conducted on groundwater samples collected from the wells once purging was complete. The instruments were checked for calibration and corrected where necessary prior to measuring the field parameters.

Groundwater samples from each Matrix monitoring well were collected into the appropriate, laboratory supplied, pre-labeled sample bottles. Each groundwater sample collected for dissolved metals analysis was field-filtered using disposable 0.45 micron filters.

Samples collected in 2016 were analyzed for the following parameters:

- general and inorganic parameters, including pH, EC, calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), iron (Fe), manganese (Mn), chloride (Cl), carbonate (as CaCO₃), bicarbonate (as CaCO₃), hydroxide (as CaCO₃), sulphate (SO₄), nitrite-nitrogen (NO₂-N), nitrate-nitrogen (NO₃-N), total Kjeldahl nitrogen (TKN), total dissolved solids (TDS), total hardness (as CaCO₃) and total alkalinity (as CaCO₃).
- dissolved metals including silver (Ag), aluminum (AI), arsenic (As), boron (B), barium (Ba), beryllium (Be), bismuth (Bi), cadmium (Cd), cesium (Cs), cobalt (Co), chromium (Cr), copper (Cu), lithium (Li), molybdenum (Mo), nickel (Ni), phosphorus (P), lead (Pb), rubidium (Rb), sulfur (S), antimony (Sb), selenium (Se), silicon (Si), tin (Sn), strontium (Sr), tellurium (Te), thorium (Th), titanium (Ti), thallium (TI), uranium (U), vanadium (V), tungsten (W), zinc (Zn), and zirconium (Zr)

Collected samples were stored in ice-chilled coolers and transported to ALS Laboratory Group in Waterloo, Ontario for analysis. A chain-of-custody form indicating sample numbers was submitted to and signed at the laboratory. Copies of the signed forms were placed in the project files and are available upon request. Laboratory results were downloaded into Matrix's database

management system and are presented in Tables B3 (Field and Routine Parameters) and B4 (Dissolved Metals). Copies of the laboratory Certificates of Analysis are provided in Appendix B4.

All samples meet the criteria outlined in the Ontario Drinking Water Quality Standards (MOE, 2006) with the exception of the following:

- Samples collected from MW02-S/D and MW05-S/D exceeded the OWDS aesthetic objective for iron. In these wells, iron levels ranged between 0.346 mg/L and 2.25 mg/L compared to the ODWS aesthetic objective of 0.3 mg/L.
- Samples collected from MW02-S/D, MW04-S, MW05-S/D and MW07-D exceeded the OWDS aesthetic objective for manganese. In these wells, manganese levels ranged between 0.0575 mg/L and 0.459 mg/L compared to the ODWS aesthetic objective of 0.05 mg/L.
- Samples collected from MW01-S and MW08-D exceeded the OWDS aesthetic objective for total dissolved solids. In these wells, total dissolved solids concentrations ranged between 550 mg/L and 639 mg/L compared to the ODWS aesthetic objective of 500 mg/L.
- Samples collected from all monitoring wells exceeded the OWDS operational guidelines for total hardness. In these wells, total hardness levels ranged between 131 mg/L and 410 mg/L compared to the ODWS operational guidelines of 80 to 100 mg/L.
- Field samples collected from MW01-S/D, MW02-S/d, MW03-D, MW05-S/D, MW06-S/D, MW07-D and MW08-S/D exceeded the OWDS aesthetic objective for turbidity. In these wells, field turbidity levels ranged between 122.6 NTU and >1100 NTU compared to the ODWS aesthetic objective of 5 NTU (MOE 2006)
- ► A sample collected from MW05-S exceeded the ODWS maximum acceptable concentration for uranium where the concentration was reported as 0.024 mg/L compared to the ODWS maximum acceptable concentration of 0.02 mg/L.

4.2.6 Enriched Tritium Analyses

Matrix personnel collected samples for enriched tritium analysis on October 28, 2016 from four monitoring wells (MW05-S, MW05-D, MW03-S, and MW07; Figure 3). Tritium levels provide insights on the age of groundwater, which may help the understanding of the recharge function of the Paris Moraine and surrounding area. The samples were placed in laboratory-supplied containers and transported to Isotope Tracer Technologies in Waterloo, Ontario for analysis. A chain-of-custody form indicating sample numbers was submitted to and signed at the laboratory. The results are provided in Table B5, where tritium is summarized to range from 6.4 TU to 13.1 TU.

4.2.7 Single Well Hydraulic Response Testing

Hydraulic response tests for all Matrix monitoring wells were completed on September 23, 28 and 30, 2016 in order to estimate the horizontal hydraulic conductivity of the hydrostratigraphic units being tested. This data will help refine the parameterization of the groundwater system in the numerical model. Tests consisted of displacing a known volume of groundwater in the well by rapidly inserting a plastic slug or a known volume of deionized water and then monitoring the rate at which the water level returned to equilibrium. The water level recoveries were measured using

the dedicated Solinst Leveloggers that were calibrated to manual water level readings collected at regular timed intervals until the water level returned to at least 80% of the initial static level.

The hydraulic response test data were interpreted using AQTESOLV[™] software (HydroSOLVE 2007). The Bouwer-Rice (1976), Hyder et al. (KGS; 1994) and Springer-Gelhar (1991) methods for partially penetrating wells were selected to estimate the hydraulic conductivity values. The results are summarized in Table B1 and the analytical solution curves are provided in Appendix B5. Results show that the hydraulic conductivity values ranged from 7E-08 m/s to 2E-03 m/s for materials ranging from silt to sandy gravel. One result (MW03-S) is considered suspect and has not been presented.

4.2.8 Guelph Permeameter Testing

In-situ soil hydraulic conductivity testing using a Guelph Permeameter was conducted on November 1 and 2, 2016 at testing locations adjacent to the nine monitoring wells (Figure 3). The Guelph Permeameter uses the constant head principle to determine the field saturated hydraulic conductivity of near surface soils. The testing was conducted using both single head and double head methods in shallow hand augered holes ranging from 0.19 m to 0.41 m deep. For either method, the drop in reservoir water level was recorded until a constant rate of water infiltration was achieved. The field saturated hydraulic conductivity results are summarized in Table B6, where values range from 4E-08 m/s to 1E-05 m/s.

4.2.9 Surface Water Spot Flow Measurements

In 2016, surface water spot flow measurements were collected during summer (August/September) and fall (November) field events to observe the seasonal variability in base flow and spatial variability along watercourses. Spot flow locations were initially selected at watercourse crossings near the SPA and PSA and were also guided by preliminary particle tracking from the City's Tier Three Water Budget model. Initial locations included measurements within the Hanlon Creek, Mill Creek and Lower Speed River subwatersheds (Figure 4). Since the initial spot flow event, locations were refined with the addition of three locations in the Torrance Creek Subwatershed and an additional location in the Mill Creek Subwatershed for a total of 27 locations (Figure 4). To ensure representative baseflow values were obtained, field measurements were not collected until total cumulative precipitation was less than 5 mm in the three days preceding the monitoring event.

Spot flow measurements were completed by securing a measuring tape across the banks of the stream and dividing the cross section of the stream into approximately 10 panels of equal width. A Son-Tek FlowTracker Acoustic Doppler Velocimeter (ADV) was used to record the width, water depth and flow velocity in each panel to produce a final discharge value for the stream at each monitoring location. Surface water temperature was also collected at each location where the ADV was used. The surface water spot flow measurement results collected to date are summarized in Table 7 and shown spatially on Figure 4. Stream discharge ranged across the regional study area from 0 L/s in headwater areas to 187 L/s (November 2016) at the most downstream station along Mill Creek.

4.2.10 Pond Bathymetry Surveys

On November 14, 2016, Groundwater Science Corp. completed bathymetry surveys of Halligan's Pond, located in the southeast ROW at Victoria Road South and Maltby Road East; Neumann's Pond A, located at 132 Clair Road; and, at an unnamed pond located in the east portion of 950 Southgate Drive (Figure 5).

Halligan's Pond and Neumann's Pond were both surveyed using a remote controlled boat equipped with a GPS, Sonar and mapping software capable of recording the depth to the pond bottom while the boat was driven in numerous transects across each pond (Figure 5). Because of shallow conditions, the unnamed pond at 950 Southgate Drive was surveyed by Groundwater Science Corp. along two transects assumed to be the deepest portions of the pond using a pressure transducer/datalogger (In Situ model RT100) and measuring tape. The datalogger was attached to the measuring tape and was pulled across the pond in regular increments with a pause at each increment for the logger to record pond depth. The data was downloaded and the water depth (compensated pressure reading) for each increment of distance was obtained. The depth profiles of each transect is shown on Figure 6. The approximate location of each transect is also shown on Figure 5. This method of measurement assumes that the datalogger travels in a straight line from start to end and that the distance pulled is equal to the horizontal distance (i.e., there is very little vertical movement).

The data from these surveys will be used to modify the topography of the wetland/pond areas in the integrated groundwater / surface water model. The modelled topography represents the true land surface and not the water surface as would normally be the case in a numerical model.

4.2.11 Seeps and Springs Observations

No seeps or springs were observed by Matrix field staff during the 2016 program; however, a spring was noted by a resident on his property at 63 Brock Road in the Mill Creek Subwatershed. More springs / seeps associated with this approximate ground surface elevation are anticipated in the Mill Creek, Hanlon Creek and Speed River subwatersheds. Two groundwater seeps were also noted previously at 132 Clair Rd., south of Neumann's Pond A (Aquafor Beech 2012). Matrix will continue to look for these features during subsequent monitoring events.

4.3 Wetlands

The purpose of the wetland water level and quality monitoring is to (a) provide study-area wide baseline information of the pre-development condition of these features, and (b) help inform the understanding of surface and groundwater interactions in the PSA.

Sampling locations (ref. Figure 7) were identified based on the objective of including samples:

- a. From a representative selection of wetlands located within the PSA, as well as falling within both the Hanlon and Mill Creek Subwatersheds;
- b. From wetlands expected to be protected for the long-term, therefore within confirmed Provincially Significant Wetlands (PSWs);
- c. From wetlands expected to have standing water in them all year round, even in dry years;

- d. From a representative selection of wetlands within different land use contexts (e.g., agricultural, natural, near roads); and
- e. In proximity to proposed groundwater stations to allow for integration and comparison of the surface water and groundwater data from the same wetlands.

5.0 OVERVIEW OF PROPOSED 2017 MONITORING

The following provides an overview of the proposed 2017 monitoring program.

5.1 Surface Water

The 2017 surface water field assessments will commence in early spring, with the same locations and monitoring equipment as the 2016 field program with the exception Station 9 (Serena Lane) being relocated to Station 15 (Hanlon Creek, Dog Walking Park). As such the surface water monitoring program will include:

- ► Rainfall monitoring at Guelph Home Building Supply
- Continuous water level and temperature monitoring at Stations 7 (Halls Pond), Station 14 (Puslinch Channel) and Station 15 (Hanlon Creek).
- Establishment of a flow rating curve at Station 15
- Grab water quality sampling at Stations 7, 14 and 15 for dry weather and wet weather events throughout spring, summer, and fall of 2017.

5.2 Groundwater)

The 2016 groundwater field program included the establishment of hydrogeological monitoring locations and the installation of monitoring equipment. In 2017, Matrix will continue regular monitoring of these monitoring locations. This monitoring will include:

- Quarterly water level monitoring of monitoring wells (manual water levels and transducer downloads)
- Quarterly water level monitoring of mini-piezometers (manual water levels and transducer downloads). Transducers will be re-installed into the mini-piezometers in the spring.
- Water quality sampling in the spring and fall at all Matrix-installed monitoring wells. Samples will be analyzed for general and inorganic parameters and dissolved metals.
- ▶ Spot baseflow measurements at the 2016 locations in the spring, summer and fall.
- Ongoing recording of observations of seeps and / or springs.

5.3 Natural Heritage

The bulk of the natural heritage monitoring and assessments will take place over 2017. These will include:

- A scoped headwater drainage feature assessment based on primarily desktop information supplemented with some targeted field assessments;
- Ecological Land Classification (ELC) refinements and wetland updates within the SPA based on primarily desktop information (ref. Figure 8) supplemented with some field assessments and scoped botanical surveys where access has been provided (ref. Figure 2);
- One to two rounds of winter wildlife surveys along identified transects, with the option to undertake an additional round in 2018 if two cannot be accommodated in 2017 due to lack of snow (ref. Figure 9);
- ► Calling amphibian (i.e., frogs and toads) surveys at 22 wetland stations (ref. Figure 9);

- Amphibian movement surveys (salamanders and anurans) along seven transects located on Maltby Road, Victoria Road and Gordon Street in locations where these species have previously been documented or would be anticipated to be moving between suitable habitats;
- Turtle basking surveys at seven ponds / wetlands (ref. Figure 9);
- ▶ Breeding bird surveys at 15 point count stations (ref. Figure 9); and
- Incidental observations of snakes and other wildlife, as well as of potential wildlife habitats such as seepage areas, during the course of other surveys.

5.3.1 Wetland Water Monitoring

Wetland water monitoring was not initiated in 2016, with the exception of preliminary sampling at Station 7. The focus of the 2016 was in confirming the locations of monitoring stations meeting the criteria above, and securing access to them.

The complete wetland water monitoring program will begin in April 2017 and extend until October or November of 2018:

- Wetland water levels and surface temperatures will be measured continuously with data loggers [Solnist brand, (model 3001) at 12 locations (see Figure 7) within the PSA. Quality will be assessed by collecting grab samples at these same locations. Loggers will record water levels in each wetland at 15 minute intervals from April to October over 2017 and 2018. Data from these loggers will be downloaded during the water quality sampling events (see below) or at least twice a year in July and October. Manual water depth measurements will be taken during the logger downloads for reference.
- The Team will collect water quality data from each of the 12 stations three times a year (i.e. once in spring, summer and fall) over two years (i.e., 2017 and 2018). Water quality parameters to be measured will be those listed in Table 1 (ref. CEIS).

Pesticides will be sampled at a subset of these stations once in the fall of 2017. Locations have been selected adjacent to land uses where pesticides would be expected (see Figure 7). Sample collection in the fall will maximize the chances of detecting pesticides that have been used over the course of the season.

6.0 References

- Aquafor Beech Limited. 2012. 132 Clair Road West, Guelph Environmental Impact Study Draft. September 2012.
- Bouwer, H., and Rive, R.C. 1976. A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resources Research, 12(3), 423.
- Canadian Council of Ministers of the Environment (CCME). 1994. Subsurface Assessment Handbook for Contaminated Sites. Prepared by the Waterloo Centre for Groundwater Research, University of Waterloo. Report CCME-EPC-NCSRP-48E. March 1994.
- Health Canada (2014). *Guidelines for Canadian Drinking Water Quality Summary Table*. Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario.
- Hyder et. al. 1994. *Slug tests in partially penetrating wells.* Water Resources Research, 30(11), 2945.
- International Atomic Energy Agency (IAEA) 2001. Annual Report 2000. Prepared by the IAEA. Austria. July 2001.
- Ontario Ministry of the Environment (MOE). 2006. *Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines.* PIBS 4449e01. June 2003. Revised June 2006.
- Springer, R.K. and Gelhar, L.W. 1991. Characterization of large-scale aquifer heterogeneity in glacial outwash by analysis of slug tests with oscillatory responses, Cape Cod, Massachusetts. U.S. Geological Survey Water Resources Investigation Report. 91-4034, 36.

Primary Study Area Boundary

Secondary Plan Area Boundary

Water Body

----- Watercourse — Highway

----- Road

A Mini Piezometer

- Spotflow Station
- Monitoring Well (Matrix)
- Monitoring Well (132 Clair Rd.)

					-
Date:		Project:	Technical:	Reviewer:	Drawn:
	02 Mar 2017	23089	J. Melchin	S. Davies	M. Urtheil
Disclai	mer: The information conta	ined herein may be compiled fror	n numerous third party materials th	hat are subject to periodic change	Figure
without	t prior notification. While eve	ery effort has been made by Matrix	Solutions Inc. to ensure the accura	acy of the information presented at	. iguio
the tim	e of publication, Matrix Solu	itions Inc. assumes no liability for a	any errors, omissions, or inaccuracie	as in the third party material.	4
					_

B - Neumann's Pond A

A - Unnamed Pond at 950 Southgate Dr.

C - Halligan's Pond

- CS Primary Study Area Boundary
- Secondary Plan Area Boundary
- S Water Body
- Watercourse
- A Mini Piezometer
- Spotflow Station
- Monitoring Well (Matrix)
- Monitoring Well (132 Clair Rd.)
- ----- Pond Depth Profile Location
- ----- Pond Bathymetry Contour (m)
- ----- Road

City of Guelph Clair-Maltby Comprehensive Environmental Impact Study Year 1 Monitoring Report

Pond Bathymetry

Date:	02 Mar 2017	Project: 23089	J. Melchin	Reviewer: S. Davies	Drawn: M.Urtheil
Disclain without the time	ner: The information conta prior notification. While ew of publication, Matrix Solu	ined herein may be compiled from ery effort has been made by Matrix tions Inc. assumes no liability for a	n numerous third party materials th Solutions Inc. to ensure the accura ny errors, omissions, or inaccuracie	at are subject to periodic change icy of the information presented at is in the third party material.	Figure 5

Figure 7				
Clair-Maltby Master Environm Servicing Plan (MESP) & Second	ental lary Plan			
Legend				
Secondary Plan Area Boundary				
Primary Study Area Boundary				
Watercourse				
CoG Parcel Fabric				
Monitoring Stations				
 Surface Water Quality* 				
Surface Water Quality + Pesticide	es			
Shallow Groundwater				
Surface Water Flow				
 ^t Water Quality Sampling Parameters inc TDS, PTP, SO⁴, CI, TKN, NO², NO³, NH³ Conductivity, DO and Metals. ^{t*} Proposed station. No equipment has be nstalled and no samples have been take Contains information licensed unde Open Government License – Ont First Base Solutions Web Mapping Service 2010 UTM Zone 17 N, NAD 83 	Plude: TSS, , Temp, pH, peen n to date. er the ario			
0 145 290 580 Metres	1:14,200			

Available Natural Heritage Data

Figure 8

Clair-Maltby Master Environmental Servicing Plan (MESP) & Secondary Plan

Legend Secondary Plan Area Boundary Primary Study Area Boundary Parcel Fabric Available Natural Heritage Data Vegetation Data Vegetation and Wildlife Data Vegetation, Wildlife and Fisheries Data **City of Guelph Natural Heritage System** Significant Natural Areas Natural Areas Natural Areas Overlay Ecological Linkages Restoration Areas Wildlife Crossings 🔶 Amphibian Crossings Deer Crossings • Other Wildlife Crossing Opportunities **County of Wellington Greenlands System** Core Greenlands Greenlands Paris Moraine ANSI (LIO, 2016) Note * This map shows data available from site-specific studies undertaken within the Primary Study Area between 2001 and 2016. Contains information licensed under the Open Government License – Ontario First Base Solutions Web Mapping Service 2010 *X* UTM Zone 17 N, NAD 83 145 290 0 580 Metres 1:14,000 BE Project 216002 March, 2017 ENVIRONMENTAL

Appendix A

Surface Water

Barologger Recorded Pressure at Victoria/Maltby for 2016

Halls Recorded Temperature for 2016

Halls Pond Recorded Water Level for 2016

Hammersley Recorded Temperature for 2016

Hammersley Recorded Water Level for 2016

Serena Lane - Recorded Water Level for August 20, 2016

Serena Lane - Recorded Water Level for August 25, 2016

Time

Hammersley Estimated Flows for 2016

Station 7 WQ 2016 Sumn	nary			4-Aug-2016	17-Aug-2016	22-Sep-2016	20-Oct-2016
216002 - Clair/Maltby	-			11:00	11:40	14:55	13:55
Parameter	Lowest Detection Limit	Units	PWQO Surface Water Parameter Limits	8/4/2016 (11:00)	8/17/2016 (11:40)	9/22/2016 (14:55)	10/20/2016 (13:55)
Physical Tests (Water)							
Total Suspended Solids	2.0	mg/L		6.8	10.7	79.4	15.8
Total Dissolved Solids	20	mg/L		178	170	149	153
Anions and Nutrients (Water)							
Ammonia, Total (as N)	0.020	mg/L	0.02	0.028	<0.020	0.025	0.082
Bromide (Br)	0.10	mg/L		<0.10	<0.10	<0.10	<0.10
Chloride (Cl)	0.50	mg/L		9.92	10.1	12.3	12.7
Fluoride (F)	0.020	mg/L		0.042	0.043	0.067	0.044
Nitrate (as N)	0.020	mg/L		<0.020	<0.020	<0.020	<0.020
Nitrite (as N)	0.010	mg/L		<0.010	<0.010	<0.010	<0.010
Total Kjeldahl Nitrogen	0.15	mg/L		1.41	1.65	2.30	1.68
Orthophosphate-Dissolved (as P)	0.0030	mg/L		<0.0030	<0.0030	<0.0030	<0.0030
Phosphorus, Total	0.0030	mg/L	0.03	0.0540	0.0742	0.173	0.0743
Sulfate (SO4)	0.30	mg/L		<0.30	<0.30	<0.30	<0.30
Total Metals (Water)							
Aluminum (Al)-Total	0.010	mg/L	0.075	0.027	0.027	0.263	<0.010
Antimony (Sb)-Total	0.00010	mg/L	0.02	<0.00010	0.00012	<0.00010	0.00018
Arsenic (As)-Total	0.00010	mg/L	0.1	0.00064	0.00079	0.00062	0.00049
Barium (Ba)-Total	0.00020	mg/L		0.0502	0.0130	0.0123	0.0084
Beryllium (Be)-Total	0.00010	mg/L	0.011	<0.00010	<0.00010	<0.00010	<0.00010
Bismuth (Bi)-Total	0.000050	mg/L		<0.000050	<0.000050	<0.000050	<0.000050
Boron (B)-Total	0.010	mg/L	0.2	0.013	0.014	0.015	0.011
Cadmium (Cd)-Total	0.000010	mg/L	0.0002	<0.000010	<0.000010	0.000022	<0.000010
Calcium (Ca)-Total	0.50	mg/L		32.7	30.9	24.4	30.6
Cesium (Cs)-Total	0.000010	mg/L		<0.000010	<0.000010	0.000026	<0.000010
Chromium (Cr)-Total	0.00050	mg/L		<0.00050	<0.00050	<0.00050	<0.00050
Cobalt (Co)-Total	0.00010	mg/L	0.0009	<0.00010	<0.00010	0.00015	<0.00010
Copper (Cu)-Total	0.0010	mg/L	0.005	<0.0010	<0.0010	<0.0010	<0.0010
Iron (Fe)-Total	0.050	mg/L	0.3	0.371	0.457	0.491	<0.050
Lead (Pb)-Total	0.00010	mg/L	0.001	0.00038	0.00053	0.00207	<0.00010
Magnesium (Mg)-Total	0.050	mg/L		8.72	7.55	7.65	6.98
Manganese (Mn)-Total	0.00050	mg/L		0.111	0.0780	0.0317	0.0150
Molybdenum (Mo)-Total	0.000050	mg/L	0.04	<0.000050	<0.000050	0.000069	<0.000050
Nickel (Ni)-Total	0.00050	mg/L	0.025	<0.00050	<0.00050	<0.00050	<0.00050
Potassium (K)-Total	0.050	mg/L		1.37	1.80	1.26	2.02
Rubidium (Rb)-Total	0.00020	mg/L		0.00045	0.00073	0.00088	0.00105
Selenium (Se)-Total	0.000050	mg/L	0.1	0.000062	0.000068	0.000082	<0.000050
Silicon (Si)-Total	0.050	mg/L		0.685	1.13	1.42	0.72
Silver (Ag)-Total	0.000050	mg/L	0.0001	<0.000050	<0.000050	<0.000050	<0.000050

			_	_			
Strontium (Sr)-Total	0.0010	mg/L		0.0650	0.0368	0.0340	0.0412
Sulfur (S)-Total	0.50	mg/L		0.52	<0.50	<0.50	<0.50
Tellurium (Te)-Total	0.00020	mg/L		<0.00020	<0.00020	<0.00020	<0.00020
Thallium (TI)-Total	0.000010	mg/L	0.0003	<0.000010	<0.000010	<0.000010	<0.000010
Thorium (Th)-Total	0.00010	mg/L		<0.00010	<0.00010	<0.00010	<0.00010
Tin (Sn)-Total	0.00010	mg/L		0.00010	<0.00010	<0.00010	<0.00010
Titanium (Ti)-Total	0.00030	mg/L		0.00051	0.00078	0.00690	<0.00030
Tungsten (W)-Total	0.00010	mg/L	0.03	<0.00010	<0.00010	<0.00010	<0.00010
Uranium (U)-Total	0.000010	mg/L	0.005	<0.000010	<0.000010	0.000016	<0.000010
Vanadium (V)-Total	0.00050	mg/L	0.006	<0.00050	<0.00050	0.00083	<0.00050
Zinc (Zn)-Total	0.0030	mg/L	0.02	0.0043	0.0032	0.0100	<0.0030
Zirconium (Zr)-Total	0.00030	mg/L	0.004	<0.00030	<0.00030	<0.00030	<0.00030

Station 14 WQ 2016 Sum	mary			4-Aug-2016	17-Aug-2016	22-Sep-2016	20-Oct-2016
216002- Clair/Maltby				10:12	10:55	14:17	13:55
Parameter	Lowest Detection Limit	Units	PWQO Surface Water Parameter Limits	8/4/2016 (10:12)	8/17/2016 (10:55)	9/22/2016 (14:17)	10/20/2016 (13:55)
Physical Tests (Water)							
Total Suspended Solids	2.0	mg/L		<2.0	2.5	<2.0	4.0
Total Dissolved Solids	20	mg/L		388	362	379	350
Anions and Nutrients (Water)							
Ammonia, Total (as N)	0.020	mg/L	0.02	<0.020	0.043	0.032	0.074
Bromide (Br)	0.10	mg/L		<0.10	<0.10	<0.10	<0.10
Chloride (Cl)	0.50	mg/L		38.0	33.5	36.7	33.6
Fluoride (F)	0.020	mg/L		0.050	0.051	0.064	0.042
Nitrate (as N)	0.020	mg/L		0.741	0.610	0.704	0.497
Nitrite (as N)	0.010	mg/L		<0.010	<0.010	<0.010	<0.010
Total Kjeldahl Nitrogen	0.15	mg/L		0.26	<0.15	0.21	0.31
Orthophosphate-Dissolved (as P)	0.0030	mg/L		0.0046	0.0097	0.0050	<0.0030
Phosphorus, Total	0.0030	mg/L	0.03	0.0056	0.0094	0.0069	0.0075
Sulfate (SO4)	0.30	mg/L		20.0	17.2	18.9	18.1
Total Metals (Water)							
Aluminum (Al)-Total	0.010	mg/L	0.075	<0.010	<0.010	<0.010	<0.010
Antimony (Sb)-Total	0.00010	mg/L	0.02	<0.00010	0.00011	<0.00010	0.00018
Arsenic (As)-Total	0.00010	mg/L	0.1	0.00017	0.00020	0.00017	0.00049
Barium (Ba)-Total	0.00020	mg/L		0.0609	0.0519	0.0586	0.00840
Beryllium (Be)-Total	0.00010	mg/L	0.011	<0.00010	<0.00010	<0.00010	<0.00010
Bismuth (Bi)-Total	0.000050	mg/L		<0.000050	<0.000050	<0.000050	<0.000050
Boron (B)-Total	0.010	mg/L	0.2	0.010	0.011	0.011	0.011
Cadmium (Cd)-Total	0.000010	mg/L	0.0002	0.000050	0.000052	0.000042	<0.000010
Calcium (Ca)-Total	0.50	mg/L		83.0	74.8	80.2	30.6
Cesium (Cs)-Total	0.000010	mg/L		<0.000010	<0.000010	<0.000010	<0.000010
Chromium (Cr)-Total	0.00050	mg/L		<0.00050	<0.00050	<0.00050	<0.00050
Cobalt (Co)-Total	0.00010	mg/L	0.0009	<0.00010	<0.00010	<0.00010	<0.00010
Copper (Cu)-Total	0.0010	mg/L	0.005	<0.0010	<0.0010	<0.0010	<0.0010
Iron (Fe)-Total	0.050	mg/L	0.3	<0.050	<0.050	<0.050	<0.050
Lead (Pb)-Total	0.00010	mg/L	0.001	<0.00010	<0.00010	<0.00010	<0.00010
Magnesium (Mg)-Total	0.050	mg/L		28.0	24.8	24.8	6.98
Manganese (Mn)-Total	0.00050	mg/L		0.0103	0.0145	0.0101	0.0150
Molybdenum (Mo)-Total	0.000050	mg/L	0.04	0.000432	0.000412	0.000419	<0.000050
Nickel (Ni)-Total	0.00050	mg/L	0.025	<0.00050	<0.00050	0.00053	<0.00050
Potassium (K)-Total	0.050	mg/L		1.24	1.11	1.15	2.02
Rubidium (Rb)-Total	0.00020	mg/L		0.00135	0.00122	0.00127	0.00105
Selenium (Se)-Total	0.000050	mg/L	0.1	0.000154	0.000160	0.000145	<0.000050
Silicon (Si)-Total	0.050	mg/L		5.24	4.89	4.84	0.716
Silver (Ag)-Total	0.000050	mg/L	0.0001	<0.000050	<0.000050	<0.000050	<0.000050

0.0010	mg/L		0.107	0.107	0.109	0.0412
0.50	mg/L		7.40	6.42	6.59	<0.50
0.00020	mg/L		<0.00020	<0.00020	<0.00020	<0.00020
0.000010	mg/L	0.0003	0.000017	0.000013	0.000012	<0.000010
0.00010	mg/L		<0.00010	<0.00010	<0.00010	<0.00010
0.00010	mg/L		<0.00010	<0.00010	<0.00010	<0.00010
0.00030	mg/L		<0.00030	<0.00030	<0.00030	<0.00030
0.00010	mg/L	0.03	<0.00010	<0.00010	<0.00010	<0.00010
0.000010	mg/L	0.005	0.000577	0.000501	0.000538	<0.000010
0.00050	mg/L	0.006	<0.00050	<0.00050	<0.00050	<0.00050
0.0030	mg/L	0.02	0.0890	0.0760	0.0759	<0.0030
0.00030	mg/L	0.004	<0.00030	<0.00030	<0.00030	<0.00030
	0.0010 0.50 0.00020 0.00010 0.00010 0.00030 0.00010 0.00050 0.0030 0.0030	0.0010 mg/L 0.50 mg/L 0.00020 mg/L 0.00010 mg/L 0.00030 mg/L 0.00030 mg/L 0.00030 mg/L	0.0010 mg/L 0.50 mg/L 0.00020 mg/L 0.00010 mg/L 0.00050 mg/L 0.006 mg/L 0.00030 mg/L	0.0010 mg/L 0.107 0.50 mg/L 7.40 0.00020 mg/L <0.00020	0.0010 mg/L 0.107 0.107 0.50 mg/L 7.40 6.42 0.00020 mg/L <0.00020	0.0010 mg/L 0.107 0.107 0.109 0.50 mg/L 7.40 6.42 6.59 0.00020 mg/L <0.00020

Appendix B

Ground Water

Appendix B1 Monitoring Well Logs

	DR	IL	LIN	IG LOG	Clair - Maltb	y Sub	wa	iter	shed Stu	ıdy		M	IW1-D
F	Client: Projec	: Cit	y of G ea: Cla	uelph air - Maltby	Date: August 18, 2016 Ground Elevation: 337.269	m asl	9	Screen Screen	Type: 52.5 mm F ed Interval: 18.75	VC Scl	hed. 40 ' m	Stick Up Northinç	: 0.51 m j: 4817765.42
F	Project	t No	.(MSI):	23089	Total Depth: 21.64 m		S	Slot Siz	:e: 0.01"			Easting:	566643.99
F	- Field S	Staff	·.I Me	elchin	Drill Rig: Foremost DR-12		(Casing	Diameter: 52.5 m	m		Datum/z	Zone: NAD83 17T
	Driller:	Hig	hland	Water Well Drillin	ig Inc Boring Diameter: 152 mm		;	Sand P	ack: 17.37 - 21.09	9 m			
_					-								
	m asl	m bgs	Lithology	Strat	igraphic Description	Depth (m bgs) Elev. (m asl)	Sample ID	Sample Type	Blow Counts (N Value)	% Recovery		Comp Det	oletion tails
		0	<u> </u>				1			T T			
337	Ē	.1		CLAYEY SILT, trac	e fine to coarse sand, brown, dry	337.27							
336				SANDY GRAVEL	coarse sand, fine to very coarse	1.52 /	5	CS	NA	NA			
335	Ē	.7		gravel, brown, poo	orly sorted, angular to subrounded,								
334	-#	.3					10	CS	NA	NA			
333	Ŧ	4											
220		-5					15	CS	NA	NA			
33Z	Ē	·6					20	<u> </u>	ΝΑ	NA			
331	Ŧ	_	$\overline{\mathbf{O}}$				20	03	INA	NA			(August 24, 2016)
330		•7					25	CS	NA	NA			
329	Ē	·8											Pontonito Crout
328	E	·9					30	CS	NA	NA			52.5 mm Sobod
		· 10		@ 9.75 m bas: dril	producing water								40
327	Ŧ	11		e	P		35	CS	NA	NA			
326	E												
325	1	•12					40	CS	NA	NA			
324	F	· 13											
303	Ē	· 14	$\langle $				45	CS	NA	NA			
525	Ē	· 15		CLAYEY SILT, son	ne fine to coarse sand, trace fine	14.63 / 322.64							
322		10		gravel, grey (TILL)	·····, ····		50	CS	NA	NA			
321	Ŧ	- 16					55	<u> </u>	NIA				
320	Ē	· 17					55	05	NA	NA	<u>^^</u>		Coated
319	<u> </u>	· 18					60	CS	NA	NA			Bentohite Chips
	ŧ	· 19	A							191			——No. 1 Sand
318	Ŧ	20	_ ⊾				65	CS	NA	NA		 _	——0.01" Screen
317	Ē	20											——No.3 Sand
316	Ē	21					70	CS	NA	NA	×^×		Coated
315	====	22		PROBABLE BEDR	оск	21.95 / 315.32	-				\wedge^{\wedge}		Bentonite Chips
	ŦĒ	23		END OF BOREHO	_E @ 21.95 m bgs								

	DF	RIL	LIN	IG LOG	Clair - Maltb	y Sub	wa	ater	shed Stu	ıdy			MW1-S
(Clien Proje Proje Field Drille	t: Cit ct Ard ct No Staff r: Hiç	y of G ea: Cl (MSI) : J. Mo ghland	uelph air - Maltby : 23089 elchin I Water Well Drillin	Date: August 19, 2016 Ground Elevation: 337.198 r Total Depth: 13.72 m Drill Rig: Foremost DR-12 ng Inc Boring Diameter: 152 mm	nasl		Screen Screen Slot Siz Casing Sand P	Type: 52.5 mm P ed Interval: 11.89 e: 0.01" Diameter: 52.5 m ack: 10.87 - 13.4 4	VC Sc - 13.41 m I m	hed. 40 1 m	Stick U Northi Eastin Datum	Jp: 0.42 m ng: 4817762.85 g: 566641.90 n/Zone: NAD83 17T
	m asl	m bgs	Lithology	Strat	igraphic Description	Depth (m bgs)/ Elev. (m asl)	Sample ID	Sample Type	Blow Counts (N Value)	% Recovery		Cor D	npletion etails
337 336	· 	0 		CLAYEY SILT, trac	e fine to coarse sand, brown, dry	0/ 337.20							
335		- 2 -		SANDY GRAVEL, o gravel, brown, poo dry	coarse sand, fine to very coarse rly sorted, angular to subrounded,	1.52 / 335.67	5	CS	NA	NA			
334	- 	-3					10	CS	NA	NA			
333 332	 	4 - - 5 -					15	CS	NA	NA			Bentonite Grout
331		- 6 -					20	CS	NA	NA			Water Level = 334.51 masl (August 24, 2016) 52.5 mm Sched.
330	 	7 					25	CS	NA	NA			40
329 328		- - 9 -		@ 9.14 m bgs: arii	producing water		30	CS	NA	NA			
327	- 	- - 10 - - -					35	CS	NA	NA	^^/ ^^/	^ ~^	Coated Bentonite Chips
326 325	; ; ; ;	- 11 - - - 12					40	CS	NA	NA			No. 1 Sand
324	- - 	- - 13 -				10.70 /	45						0.01" Screen
323		- 14 - -		END OF BOREHOL	.E @ 13.72 m bgs	13.72 / 323.48	45	CS	NA	NA			Backfill
300]]	- 15											

NOTES: 0.00 to 7.62 m bgs logged from MW1-D m asl = metres above sea level m bgs = metres below ground surface CS = cyclone sample

D	RIL	LIN.		Clair - Maltby	/ Sub	wa	ater	shed Stu	ıdy	ſ	MW2-D
Clie	ent: Ci	ty of G	uelph	Date: August 3, 2016		ŝ	Screen	Type: 52.5 mm P	VC Sched. 40	Stick L	lp: 0.83 m
Pro	oject Ai	rea: C	lair - Maltby	Ground Elevation: 335.294 m	asl	9	Screen	ed Interval: 19.20	- 20.73 m	Northi	ng: 4817418.83
Pro	ject No	o.(MSI)): 23089	Total Depth: 23.16 m		ŝ	Slot Siz	e: 0.01"		Eastin	g: 566680.83
Fie	ld Staf	if: S. M	liller/J. Melchin	Drill Rig: Foremost DR-12		(Casing	Diameter: 52.5 m	m	Datum	/Zone: NAD83 17T
Dril	ller: Hi	ghland	d Water Well Drillin	g Inc Boring Diameter: 152 mm		:	Sand P	ack: 17.37 - 23.16	6 m		
m asl	m bgs	Lithology	Strati	graphic Description	Depth (m bgs)/ Elev. (m asl)	Sample ID	Sample Type	Blow Counts (N Value)	% Recovery	Con De	npletion etails
335 —	∃E ⁰		SANDY GRAVEL, f	ine to coarse sand, medium to fine	0 /						
334 —			gravel fining down to subrounded, dry	wards, brown, poorly sorted, angular	335.29						
	-2					5	CS	NA	NA		
	-3					10	CS	NA	NA		
332											
331 —			@4.57 m bgs: mois	t		15	CS	NA	NA		(August 24, 2016)
330 —			1)
329 —			@ 6.10 m bgs: drill	producing water		20	CS	NA	NA		
328 -						05	00	NIA			
327 —	8					25	CS	NA			Bentonite Grout
326 -	9				9.14 /	30	CS	NA	NA		
			GRAVELLY SAND, gravel, grey, poorly	fine to coarse sand, fine to medium / sorted, angular to sub rounded,	326.15						52.5 mm Sched. 40
325 —		<mark> ⊾ :</mark>	saturated		10.67 /	35	CS	NA	NA		
324 —			fine to very fine SA sorted, saturated	ND, fining downwards, grey, well	324.03						
323 —						40	CS	NA	NA		
322 -	13					45	66	NIA			
321 —						45	03	INA			
320 —	15					50	CS	NA	NA		
310		• •	SII TY fine SAND o	rev moderately well sorted	15.85/						
		 	saturated			55	CS	NA	NA 🔥	^_	Coated
318		 									Bentonite Chips
317 —	#		GRAVELY SAND, n	nedium to coarse sand, fine to	18.29 / 317.01	60	CS	NA	NA		No. 1 Sand
316 —	1 - 19		medium gravel, po subrounded, satura	orly sorted, subangular to ated		65	6	NA			
315 —	20 					00	5	INA			———0.01" Screen
314 —	21					70	CS	NA	NA		
313 —	22									V	No.3 Sand
210	23				23.16/	75	CS	NA	NA		
312	24		END OF BOREHOL	E @ 23.16 m bgs	312.13						
311		L	I			1			I I		

D	RIL	.LIN	IG LOG	Clair - Maltby	y Sub	wa	ater	shed Stu	ıdy	,	MW	2-S
Clie Pro Proj Fiel Dril	nt: Cit ject Ar ect Nc d Staff ler: Hiç	ty of G rea: CI o.(MSI) f: S. M ghland	uelph air - Maltby : 23089 iller/J. Melchin I Water Well Drillir	Date: August 4, 2016 Ground Elevation: 335.402 m Total Depth: 9.14 m Drill Rig: Foremost DR-12 ng Inc Boring Diameter: 152 mm	nasl		Screen Screene Slot Siz Casing Sand P	Type: 52.5 mm P ed Interval: 6.71 - e: 0.01'' Diameter: 52.5 m ack: 5.79 - 9.14 n	VC Sc 8.23 r m า	:hed. 40 n	Stick Up: 0.91 Northing: 481 Easting: 566 Datum/Zone:	m 7425.33 681.67 NAD83 17T
m asl	m bgs	Lithology	Strat	igraphic Description	Depth (m bgs)/ Elev. (m asl)	Sample ID	Sample Type	Blow Counts (N Value)	% Recovery		Completic Details	on
- 335 — - -			SANDY GRAVEL, 1 gravel fining down to subrounded, dr	fine to coarse sand, medium to fine wards, brown, poorly sorted, angular y	0 / 335.40							
334 — – – 333 — –	-2					5	CS	NA	NA		- B	entonite Chips
- - 332 - -	-3					10	CS	NA	NA		и 3 (4 2 5 4	/ater Level = 31.78 masl August 24, 016) 2.5 mm Sched. 0
331 — - - 330 — -	5		@ 4.57 m bgs: moi	ist		15	CS	NA	NA		∧^^/ ∧^/ ∧^/ ∧^/ ∧^/ B	oated entonite Chips
- - 329 — - -	-6 - - - - 7		@ 6.10 m bgs: dril	l producing water		20	CS	NA	NA		^	lo. 1 Sand
328 — – – 327 — –						25	CS	NA	NA		0	.01" Screen 10.3 Sand
- - 326 — - -	-9 - - -		END OF BOREHO	LE @ 9.14 m bgs	9.14 / - 326.26	30	CS	NA	NA			

NOTES: 0.00 to 6.10 m bgs logged from MW2-D m asl = metres above sea level m bgs = metres below ground surface CS = cyclone sample

DF	RIL	LIN	NG LOG	Clair - Maltby	/ Sub	wa	ter	shed Stu	ıdy	,		MW3-D
Clien	nt: Cit	y of G	iuelph	Date: July 25, 2016		S	Screen	Type: 52.5 mm P	VC So	:hed. 40	Stick	Up: 0.70 m
Proje	ect Ar	ea: Cl	lair - Maltby	Ground Elevation: 350.052 m	asl	S	Screene	ed Interval: 32.61	- 34.1	4 m	North	ing: 4816950.32
Proje	ct No	.(MSI)): 23089	Total Depth: 35.66 m		S	Slot Siz	e: 0.01"			Eastir	ng: 568080.23
Field	Staff	. c M	lillor	Drill Rig. Foremost DR-12		C	Casing	Diameter: 52 5 m	m		Datur	n/Zone [·] NAD83 17T
Drille	er: Hic	hland	d Water Well Drilling	Inc Boring Diameter: 152 mm		ę	Sand P	ack: 30.78 - 35.0	 5 m		Datan	
			••••••		~							
m asl	m bgs	Lithology	Strati	graphic Description	Depth (m bgs) Elev. (m asl)	Sample ID	Sample Type	Blow Counts (N Value)	% Recovery		Cor D	npletion letails
350	0											
349		••••	fine to medium SAN brown, poorly sorte	ID, some fine to coarse gravel, d, subangular to subrounded	0 / 350.05	5	65	ΝΔ	ΝΔ			
348	-2		gravel, dry			- 5	00					
347	-3					10	CS	NA	NA			
345 –	5					15	CS	NA	NA			
344 –	6					20	CS	NA	NA			
343	-7 - 0	••••				25	CS	NA	NA			
341 -	-9					30	CS	NA	NA			
340 –	- 10	••••				00	00	NIA				
339 –	- 11					35	CS	NA	NA			
338	E 12	••••	•			40	CS	NA	NA			
336	14					45	CS	NA	NA			
335 –	15	••••				50	CS	NA	NA			Bentonite Grout
334	16					55	CS	NA	NA	-		52.5 mm Sched.
333	- 17	••••				00	00					40
331 -	- 19					60	CS	NA	NA			Water Level =
330 –	- 20	••••	@18.90 m bgs: moi	st		65	CS	NA	NA			(August 24,
329	- 21					70	CS	NA	NA			2016)
320	22					75	CS	NA	NA			
326 –	24				24.38/	80	CS	NA	NA			
325	25	· · ·	medium SAND, bro	wn, well sorted, wet, loose	325.67	95	<u> </u>	N۸	NIA			
324	20		fine to coarse GRA	/EL, some coarse sand, poorly	25.917 324.14	00	03	11/7				
322	28		sorted, angular to s	ubrounded, wet		90	CS	NA	NA			
321 –	29					95	CS	NA	NA			No. 3 Sand
320	÷ 30	Ŋ				100	CS	NA	NA	<u>^</u>	^ ^	Coated
318	- 32					105	ÇS	NA	NA			Bentonite Chips
317 –	- 33				33 52 /	110	0.5	NΔ	NΔ			No. 3 Sand
316	- 34		SILTY fine to coarse	e SAND, trace fine to coarse gravel,	316.52	110	00		1 1/21			No.3 Sand
315 — 314 —	- 35 - 36				35.36/	115	CS	NA	NA	<u>^</u>		Coated
313 –	37				35.66 /							Bentonite Chips
312 –	- 38		END OF BOREHOL	E @ 35.66 m bgs	314.39							
	E 30					1			1	1		

		LIN	IG LOG	Clair - Maltby	y Sub)wa	ter	shed Stu	ıdy			MW	'3-S
Clier Proje Proje Field Drille	ect Ard ect Ard ect No Staff er: Hig	y of G ea: Cla b.(MSI) : S. M ghland	uelph air - Maltby : 23089 iller Water Well Drilling	Date: July 26, 2016 Ground Elevation: 349.947 m Total Depth: 23.16 m Drill Rig: Foremost DR-12 Inc Boring Diameter: 152 mm	nasi		Screen Screene Slot Siz Casing Sand P	Type: 52.5 mm P ed Interval: 21.64 e: 0.01" Diameter: 52.5 m ack: 19.51 - 23.16	VC Sc - 23.1(m 3 m	hed. 40 6 m	Stick I Northi Eastir Datun	Jp: 0.6 8 ng: 481 g: 568 n/Zone:	8 m 6948.56 083.16 NAD83 17T
m asl	m bgs	Lithology	Stratig	raphic Description	Depth (m bgs)/ Elev. (m asl)	Sample ID	Sample Type	Blow Counts (N Value)	% Recovery		Cor D	npleti etails	on
349	$1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$		fine to medium SANI brown, poorly sorted gravel, dry @18.90 m bgs: mois	D, some fine to coarse gravel, I, subangular to subrounded t t Q 23.16 m bgs	0 / 349.95	5 10 15 20 25 30 35 40 40 45 50 55 55 60 60 65 70 75	CS CS	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA				Bentonite Grout 52.5 mm Sched. 40 Santonite Grout 40 Santonite Chips Vo. 3 Sand 20.01" Screen

DF	RIL	LIN	IG LOG	Clair - Maltby	/ Sub	wa	ter	shed Stu	ıdy		MW4-D
Clier Proje Proje Fielc Drille	nt: Cit ect Ar ect No I Staff er: Hiç	ea: CI ea: CI o.(MSI) f: D. M ghland	uelph air - Maltby : 23089 artin Water Well Drillin	Date: August 22, 2016 Ground Elevation: 349.598 m Total Depth: 29.87 m Drill Rig: Foremost DR-12 g Inc Boring Diameter: 152 mm	asl		Screen Screene Slot Siz Casing Sand P	Type: 52.5 mm P ed Interval: 26.82 e: 0.01" Diameter: 52.5 m ack: 26.00 - 29.08	VC Sched - 28.35 m m 3 m	40 Stick Nort East Datu	: Up: 0.76 m hing: 4816485.40 ing: 566169.17 im/Zone: NAD83 17T
m asl	m bgs	Lithology	Strati	graphic Description	Depth (m bgs)/ Elev. (m asl)	Sample ID	Sample Type	Blow Counts (N Value)	% Recovery	Co	ompletion Details
349	0 1 2 3		SILTY fine to coars gravel, grey, poorly	se SAND, some fine to medium y sorted, angular, damp (TILL)	0 / 349.60	5	CS CS	NA	NA		
345 344 343 342 341	-4 		@6.10 m bgs: clea gravel	ner SILTY SAND lense, trace fine		15 20 25	CS CS CS	NA NA NA	NA NA NA		
340	10		fine to coarse SAN poorly sorted, sub	D, some fine gravel, trace silt, grey, rounded, damp	9.91 / 339.69	30	CS	NA	NA		
338	12	È r b r	fine to course SAN layers of fine to me sorted, angular (po @13.72 m bgs: sat	DY SILT to SILTY SAND, occasional adium gravel, grey, very poorly ossible TILL) urated	338.17	40	CS CS	NA	NA NA	-	Bentonite Grout 52.5 mm Sched. 40
334	15 16 17 17		@ 16.76 m bgs: le	nse of increased SILT content		50 55 60	CS CS	NA NA	NA		Water Level = 336.83 masl (August 24, 2016)
331	19 20 21					65	CS	NA	NA		
328	22		@ 22.86 m bgs: lay trace silt, poorly so	rer of fine GRAVELY coarse SAND, orted		75	CS	NA	NA		
325 – 324 –	24 25 26					80 85	CS CS	NA	NA		Coated Bentonite Chips
323	27		@ 27.43 m bgs: lay trace silt, poorly so @ 28.96 m bgs: lay trace silt, poorly so	ver of fine GRAVELY coarse SAND, orted ver of fine GRAVELY coarse SAND, orted	29 57 /	90 95	CS CS	NA	NA		No. 1 Sand
320	E 30			оск /	320.03	97	CS	NA	NA	^^^ ``````````````````````````````````	Coated Bentonite Chips
318	- 31			/ .E @ 29.87 m bgs	319.73						

C)R	RIL	LIN	IG LOG	Clair - Maltby	/ Sub	wa	ater	shed Stu	ıdy			MW4-S
c	lient	: Cit	y of G	uelph	Date: August 22 - 23, 2016		:	Screen	Type: 52.5 mm P	VC Sc	hed. 40	Stick L	Jp: 0.81 m
P	rojeo	ct Ar	ea: CI	air - Maltby	Ground Elevation: 349.633 m	asl	\$	Screen	ed Interval: 19.40	- 20.93	3 m	Northi	ng: 4816488.20
Pr	rojec	ct No	.(MSI)	: 23089	Total Depth: 21.34 m		5	Slot Siz	e: 0.01"			Eastin	g: 566170.83
Fi	ield	Staff	: D. M	artin	Drill Rig: Foremost DR-12			Casing	Diameter: 52.5 m	m		Datum	/Zone: NAD83 17T
D	riller	∵ Hig	ghland	Water Well Drillin	g Inc Boring Diameter: 152 mm		:	Sand P	ack: 18.36 - 21.34	1 m			
	m asi	m bgs	Lithology	Strati	graphic Description	Depth (m bgs)/ Elev. (m asl)	Sample ID	Sample Type	Blow Counts (N Value)	% Recovery		Con D	npletion etails
349 -		-0 -1		SILTY fine to coars gravel, grey, poorly	e SAND, some fine to medium / sorted, angular, damp (TILL)	0 / 349.63							
348 -	∃₽	-2					5	CS	NA	NA			
347 -	-16	-3	\square				10	CS	NA	ΝΔ			
346 -	3	_1	$\triangleright $				10	00					
345 -			$\overset{\sim}{\triangleright}$				15	CS	NA	NA			
344 -	_=[E	-5	$\overset{\scriptstyle \vee}{\vdash}$	@6.10 m bgs: clear	ner SILTY SAND lense, trace fine								
343 -	3	-6		gravel			20	CS	NA	NA			
342 -		-7					25	CS	NA	NA			
244	Ę	-8	\square					00					Bentonite Grout
0.10		-9					30	CS	NA	NA			
340 -		- 10		fine to coarse SAN	D, some fine gravel, trace silt, grey,	9.91 / 339.73							
339 -	Ē	- 11		poorly sorted, subr	rounded, damp	11 43 /	35	CS	NA	NA			
338 -	∃₿	- 12		fine to course SAN lavers of fine to me	DY SILT to SILTY SAND, occasional	338.20	40	CS	NA	NA			
337 -	∃⊧	- 13		sorted, angular, da	mp (possible TILL)								
336 -	=[- 14		@13.72 m bgs: satu	urated		45	CS	NA	NA			Water Level = 339.34 masl
335 -	3	- 15											(August 24, 2016)
334 -		- 10					50	CS	NA	NA			
333 -	_=[E	- 16		@ 16.76 m bgs: ler	nse of increased SILT content		55	20	ΝΔ	ΝΔ			
332 -	3	- 17					- 55	00			~^/	~^/	Contrad
224		- 18	$ \stackrel{/ \bigtriangleup}{ } $				60	CS	NA	NA	<u>^^</u>	^^/	Bentonite Chips
331 -	∃⊧	- 19											
330 -	Ē	- 20					65	CS	NA	NA			No. 1 Sand 0.01" Screen
329 -		- 21				21 34 /	70	CS	NA	NA			No.3 Sand
328 -	=	- 22		END OF BOREHOL	E @ 21.34 m bgs	328.30							
327 -	1	- 23											
-	<u> </u>	20											

NOTES: 0.00 to 16.76 m bgs logged from MW4-D m asl = metres above sea level m bgs = metres below ground surface CS = cyclone sample

)R	lL	LIN	IG LOG	Clair - Maltby	Clair - Maltby Subwatershed Study							MW5-D	
c	lient	: Cit	y of G	uelph	Date: August 10 - 11, 2016		ę	Screen	Type: 52.5 mm P	VC Sc	hed. 40	Stick l	Jp: 0.71 m	
P	rojeo	ct Ar	ea: Cl	air - Maltby	Ground Elevation: 340.167 n	nasl	ę	Screene	ed Interval: 22.56	- 24.0	8 m	Northi	ng: 4816336.75	
P	rojec	t No	.(MSI)	: 23089	Total Depth: 25.30 m		5	Slot Siz		Easting: 567001.03				
F	ield	Staff	: D. M	artin	Drill Rig: Foremost DR-12		(Casing		Datum	/Zone: NAD83 17T			
D	riller	: Hig	ghland	Water Well Drillin	ng Inc Boring Diameter: 152 mm		;	Sand P						
	m asi	m bgs	Lithology	Strat	igraphic Description	Depth (m bgs)/ Elev. (m asl)	Sample ID	Sample Type	Blow Counts (N Value)	% Recovery		Cor D	npletion etails	
340	Ē	-0		fine clean GRAVEI	L, well sorted, angular to sub	0 / 340.17								
339 · 338 ·		-2		medium to coarse	SAND and fine to medium GRAVEL,	1.52 / 338.64	5	CS	NA	NA				
337 ·		-3		SILTY GRAVELY fi	ine to coarse SAND, fine gravel,	3.05 / 337.12	10	CS	NA	NA				
336 · 335 ·		-5		(TILL)			15	CS	NA	NA				
334 ·		-6					20	CS	NA	NA			338.93 masl (August 24, 2016)	
333 · 332 ·		-8				- 8.38 /	25	CS	NA	NA				
331 ·		-9 - 10		coarse SAND and well sorted, well ro	fine GRAVEL, brown, moderately bunded, saturated	331.79	30	CS	NA	NA				
330 · 329 ·		- 11				- 11.43 /	35	CS	NA	NA			Bentonite Grout 52.5 mm Sched.	
328 ·		- 12	· · · · ·	SILTY very coarse poorly sorted, ang	SAND, some fine gravel, grey, ular, saturated	328.74	40	CS	NA	NA			40	
327 · 326 ·		- 14				14 48 /	45	CS	NA	NA				
325		- 15 - 16		fine to very coarse coarse sand, poor	e GRAVEL up to COBBLES, some ly sorted, subrounded	325.69	50	CS	NA	NA				
323 ·		- 17		coarse SAND finin	g downwards to fine SAND, grey,	16.76 / 323.40	55	CS	NA	NA				
322 ·		- 18 - 19		well sorted, sub ro			60	CS	NA	NA				
320 ·		- 20					65	CS	NA	NA				
319 · 319 ·		- 21 - 22					70	CS	NA	NA	<u>^^</u> /		Coated Bentonite Chips	
317 ·		- 23		@22.86 m bgs: ver	y trace SILT		75	CS	NA	NA			No. 1 Sand	
316 ·	=	- 24	••••		00%	24.38/	80	CS	NA	NA			No. 1 Sand	
315 ·	∃₽	- 25			UUN 	25.30 /	83	CS	NA	NA	^^^	^_	Coated Bentonite Chips	
314 · 313 ·		- 26 - 27		END OF BOREHOI	ட்ட டூ ∠5.30 m bgs	314.87								

DF	RIL	LIN	IG LOG	Clair - Maltb	y Sub	wa	ter	shed Stu		MW5-S				
Clien	t: Cit	y of G	uelph	Date: August 11, 2016		5	Screen	Type: 52.5 mm P	VC Scl	ned. 40	Stick Up	D: 0.76 m		
Proje	ct Are	ea: Cl	air - Maltby	Ground Elevation: 340.163 n	nasl	S	Screene	ed Interval: 15.24	- 16.76	m	Northing	g: 4816334.91		
Proje	ct No	.(MSI)	: 23089	Total Depth: 17.07 m		ę	Slot Size		Easting: 566998.56					
Field	Staff	: D. M	artin	Drill Rig: Foremost DR-12	Casing Diameter: 52.5 mm							Datum/Zone: NAD83 17T		
Drille	r: Hig	hland	Water Well Drilling	g Inc Boring Diameter: 152 mm		ę	Sand Pa	ack: 13.72 - 16.76	6 m					
m asl	Abolo Stra		Strati	graphic Description	Depth (m bgs)/ Elev. (m asl)	Sample ID	Sample Type	Blow Counts (N Value)	% Recovery		Completion Details			
	0 		fine GRAVEL, well s	sorted, angular to sub rounded, dry	0 / 340.16									
	-				1.52 /	5	CS	NA	NA					
	-2		medium to coarse S brown, moderately	well sorted, well rounded, dry	330.04									
	-3				3.05 /	10	CS	NA	NA					
	-		SILTY GRAVELY fin brown, poorly sorte	ne to coarse SAND, fine gravel, ed, angular to subangular, saturated	337.12									
	-		(1122)			15	CS	NA	NA					
	-5													
	-6	\triangleright				20	CS	NA	NA			(August 24, 2016)		
		\overrightarrow{D}										Bentonite Grout		
	- /	\searrow^{\vee}				25	CS	NA	NA					
_	-8				8.38 /							40		
	- - -9		coarse SAND and fi well sorted, well rou	ne GRAVEL, brown, moderately unded, saturated	331.78	30	62	ΝΔ	ΝΔ					
	-					- 50	00	107						
	- 10 - -					05	00	N 14						
-	- - 11				11 43 /	35	CS	NA	NA					
	- - - 12		SILTY very coarse s	SAND, some fine gravel, grey,	328.73									
	-		poony sorted, angu	iai, saturateu		40	CS	NA	NA			Control		
	- 13											Bentonite Chips		
	- 14					45	CS	NA	NA					
	- 45		fine to very coarse	GRAVEL up to COBBLES, some	14.48 / 325.69									
	- 15 - -		coarse sand, fine to subrounded	o very coarse gravel, poorly sorted,		50	CS	NA	NA			——No. 1 Sand		
	- 16 -											——0.01" Screen		
	- - 17				17.07 /	55	CS	NA	NA					
	-		END OF BOREHOLI	E @ 17.07 m bgs	323.09									
	- 18 - -													
_	- 19													

NOTES: 0.00 to 10.67 m bgs logged from MW5-D m asl = metres above sea level m bgs = metres below ground surface CS = cyclone sample

DF	RIL	LI	NG LOG	Clair - Maltby	/ Sub	owa	ter	shed Stu	ıdy	1		MW6-D	
Clien	nt: Cit	y of	Guelph	Date: August 15, 2016		S	Screen	Type: 52.5 mm P	VC So	ched. 40	Stick	Up: 0.79 m	
Proje	ect Ar	ea: C	Clair - Maltby	Ground Elevation: 352.380 m	asl	ę	Screene	ed Interval: 35.05	- 36.5	8 m	North	ing: 4816249.90	
Proje	ct No	.(MS	il): 23089	Total Depth: 38.10 m		9	Slot Siz	e: 0.01"			Easting: 567400.42		
Field	Staff	D.	Martin	Drill Rig: Foremost DR-12	R-12 Casing Diameter: 52.5 mm						Datur	n/Zone: NAD83 17T	
Drille	er: Hig	ghlan	nd Water Well Drilli	ng Inc Boring Diameter: 152 mm		:	Sand P	ack: 34.32 - 36.8 8	m				
m asl	m bgs	Litholoav	Stra	tigraphic Description	Depth (m bgs)/ Elev. (m asl)	Sample ID	Sample Type	Blow Counts (N Value)	% Recovery		Cor	mpletion Details	
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0		GRAVELY SAND, gravel, brown, po subrounded, dry	fine to coarse sand, fine to medium orly sorted, subangular to to damp	0 / 352.38	5	CS CS						
}- 	-4 -5					15	CS						
6	6		1.			20	CS						
5	8					25	CS						
3 –	-9 - 10		@ 9.91 to 12.95 m	bgs: GRAVEL, some fine to coarse		30	CS						
2	11					35	CS						
0	- 12 - 13	\bigtriangledown				40	CS						
8	14				14 48 /	45	CS						
	- 15 - 16		fine to very coars poorly sorted, and	e SANDY SILT to SILTY SAND, brown, gular to subangular, damp	337.90	50	CS					Bentonite Grout	
, 5 1	17		fine to medium SA	AND coarsening downwards to a	336.38	55	CS					52.5 mm Sched.	
4	- 18 - 19		@18.29 m bgs: sa	angular to subrounded, damp iturated		60	CS					40 Water Level =	
2	20					65	CS					333.88 masl (August 24.	
	22	•••	•		22.10/	70	CS					2016)	
	23		SILT, trace clay, t saturated	race coarse sand, grey, poorly sorted,	330.28	75	CS						
3	24	· · · ·	SILTY fine to med	lium SAND, fining downwards, brown,	328.76	80	CS						
6	26	· · · · · ·	poorly sorted, sat	turated, very loose		85	CS						
	28	· · · · · ·	•			90	CS						
3	- 29	· · ·	•			95	CS						
2	- 30 - 31	· · ·				100	CS			Ö	Ö		
0	- 32					105	CS			Ö	<mark>Ö</mark>	Natural Slough	
9	- 33					110	CS					Coated	
° –	35				35.81/	115	CS					No. 1 Sand	
6	= 30 - 37		GRAVELY SAND	(fine to medium gravel, fine to coarse grey, poorly sorted, saturated	316.57 37.197	120	CS					0.01" Screen	
3 4 3	- 38 - 39		SILTY CLAY, som	he fine GRAVEL, grey, poorly sorted, gular, saturated (TILL)	315.19 37.80 / 314.58	124						No. 1 Sand	
12 -	40 41		END OF BOREHO	DLE @ 37.80 m bgs	014.00								
" =	E 42												

D	RIL	LIN	IG LOG	Clair - Maltby	/ Sub	wa	ter	shed Stu	ıdy		MW6-S		
Cli	ent: Ci	ty of G	iuelph	Date: August 16-17, 2016		5	Screen	Type: 52.5 mm P	VC Sc	hed. 40	Stick L	Jp: 0.79 m	
Pro	oject A	rea: Cl	air - Maltby	Ground Elevation: 352.406 m	asl	5	Screen	ed Interval: 21.39	- 22.9	1 m	Northi	ng: 4816246.66	
Pro	ject N	o.(MSI)	: 23089	Total Depth: 23.17 m		ę	Slot Siz	e: 0.01"			Easting: 567401.07		
Fie	ld Stat	ff: D. M	lartin	Drill Rig: Foremost DR-12		(Casing		Datum	n/Zone: NAD83 17T			
Dri	ller: Hi	ghland	l Water Well Drillin	ng Inc Boring Diameter: 152 mm		ę	Sand P						
m asl	m asl Trithology Lithology			igraphic Description	Depth (m bgs)/ Elev. (m asl)	Blow Counts N Value)			% Recovery		Completion Details		
352 — 351 — 350 —			GRAVELY SAND, 1 gravel, brown, poc subrounded, dry to	fine to coarse sand, fine to medium rly sorted, subangular to o damp	0 / 352.41	5	CS						
349 —	-3					10	CS						
348 —	-4					15	CS						
347 — 346 —	6					20	CS						
345 -	-7					25	CS						
343 —	-9 		@ 9.91 to 12.95 m SAND	bgs: GRAVEL, some fine to coarse		30	CS					Bentonite Grout	
342 — 341 —	11					35	CS				-	52.5 mm Sched. 40	
340 —	1 - 12					40	CS						
339 —						45	CS						
338 — 337 —	1 - 15		fine to very coarse poorly sorted, ang	SANDY SILT to SILTY SAND, brown, ular to subangular, damp	14.48 / 337.93	50	CS						
336 —	16 - 16 - 17		fine to medium SA poorly sorted GRA damp	ND coarsening downwards to a VELY SAND, angular to subrounded,	16.00 / 336.40	55	CS						
335 — 334 —	18		@18.29 m bgs: sat	urated		60	CS			~~~		Water Level = 334.07 masl (August 24, 2016)	
333 -	19					65	CS					Coated Bentonite Chips	
331 -	21				00.40.7	70	CS					No. 1 Sand	
330 -	- 23		SILT, trace clay, tr saturated	ace coarse sand, grey, poorly sorted, /	22.10/ 330.31 22.86/ 329.55	75	CS					0.01" Screen No. 1 Sand	
	24		END OF BOREHO	LE @ 22.86 m bgs									

NOTES: 0.00 to 15.24 m bgs logged from MW6-D m asl = metres above sea level m bgs = metres below ground surface CS = cyclone sample

	DRIL	LIN	IG LOG	Clair - Maltby	Clair - Maltby Subwatershed Study							MW7-D	
	Client: Ci Project Al Project No Field Staf Driller: Hi	ty of G rea: CI o.(MSI) f: D. M ghland	uelph air - Maltby : 23089 artin I Water Well Drillir	Date: August 23, 2016 Ground Elevation: 347.035 m Total Depth: 35.46 m Drill Rig: Foremost DR-12 ng Inc Boring Diameter: 152 mm	Date: August 23, 2016 Ground Elevation: 347.035 masl Total Depth: 35.46 m Drill Rig: Foremost DR-12 Boring Diameter: 152 mm			Type: 52.5 mm P ed Interval: 33.07 ee: 0.01'' Diameter: 52.5 m eack: 32.16 - 34.8 2	ched. 40 9 m	Stick Up: 0.76 m Northing: 4815512.35 Easting: 565478.72 Datum/Zone: NAD83 17T			
	Strat			igraphic Description	Depth (m bgs)/ Elev. (m asl)			Blow Counts (N Value)	% Recovery		Completion Details		
34 34 34 34 34	7 0 6 1 1 5 1 2 4 1 4 3 1 1 4		GRAVELY SAND (i coarse sand), brow	fine to medium gravel, medium to vn, poorly sorted, subrounded, dry	0 / 347.04	5 10 15	CS CS CS						
34 34 34 33 33 33	2 - 5 1 - 6 0 - 7 9 - 8 8 - 9 7 - 10 7 -	· · · · · · · · · · · · · · · · · · ·	SILT, trace clay co trace fine gravel, b	arsening downwards to SANDY SILT, rown, angular, dry	5.33 / 341.70	20 25 30 35	CS CS CS CS						
33 33 33 33 33 33	6 - 11 5 - 12 4 - 13 3 - 14 2 - 14 2 - 15 1 - 16		SANDY GRAVEL, i medium gravel, br subangular, moist	medium to coarse sand, fine to own, poorly sorted, angular to	11.43 / 335.61	40	CS CS CS					Bentonite Grout	
33 32 32 32 32 32	0 17 9 18 8 19 7 20 6 21 5 22		medium to coarse sorted, saturated	SAND fining downwards, grey, well	20.57 / 326.46	60 65 70	CS CS CS CS					40 Water Level = 331.94 masl (August 24, 2016)	
32 32 32 32 32 32	4		SANDY SILT to SIL	TY SAND fining downwards to SILT,	26.67 /	75 80 85 90	CS CS CS CS						
31 31 31 31 31 31	9 28 8 29 7 30 6 31 5 32 4 20		grey, well sorted, s	saturated y, moderately well sorted, saturated	31.24 / 315.79	95 100 105	CS CS CS				< < < < <	Coated Bentonite Chips	
31 31 31 31 31 31 31	4 33 3 34 2 35 1 36 0 37 9 38		SANDY GRAVEL, 1 poorly sorted, ang END OF BOREHOI	fine gravel, fine to coarse sand, grey, ular to subangular, saturated LE @ 35.36 m bgs	314.27 35.36 / 311.68	110	CS CS					No. 1 Sand 0.01" Screen No.3 Sand Coated Bentontite Chips	

DF	RIL	LIN	IG LOG	Clair - Maltby	/ Sub	owa	ater	shed Stu	ıdy	MV	/8-D		
Clien	t: Cit	y of G	uelph	Date: August 9, 2016		5	Screen	Type: 52.5 mm P	VC So	:hed. 40 Stick Up: 0.	Stick Up: 0.87 m		
Proje	ect Ar	ea: CI	air - Maltby	Ground Elevation: 338.477 m	asl	\$	Screene	ed Interval: 17.68	- 19.2	0 m Northing: 48	Northing: 4815489.34		
Proje	ct No	.(MSI)	: 23089	Total Depth: 27.74 m		5	Slot Siz	e: 0.01"		Easting: 56	6248.11		
Field	Staff	: D. M	artin/J. Melchin	Drill Rig: Foremost DR-12			Casing	Diameter: 52.5 m	m	Datum/Zone	e: NAD83 17T		
Drille	er: Hig	ghland	l Water Well Drillin	g Inc. Boring Diameter: 152 mm		:	Sand Pa	ack: 16.15 - 19.8 1	m				
m asl	m bgs	Lithology	Strati	graphic Description	Depth (m bgs)/ Elev. (m asl)	Sample ID	Sample Type	Blow Counts (N Value)	% Recovery	Comple Detail	tion S		
	_0 _1		fine to coarse SAN silt, brown, poorly	D and fine to medium GRAVEL, trace sorted, angular to sub-rounded,	0 / 338.48								
	-2		damp to moist	, . ,		5	CS						
	-3					10	CS						
	4		@4.57 m bgs: satu	rated		15	CS						
	-5												
	-7					20	CS						
	-8					25	CS				-Water Level = 333.96 masl (August 24		
	9					30	CS				2016)		
	10					35	CS				52.5 mm Sched.		
	- 11										40		
	- 13				12.95 /	40	CS						
	- 14		very coarse SAND downwards to med	and fine GRAVEL, slight coarsening lium coarse gravel, grey, moderately	325.52	45	CS						
	15		well sorted, satura	ted		50	CS						
	16					55	68				-Coated Bentonite Chips		
	- 17					- 55	03				-No. 1 Sand		
	- 18					60	CS				-0.01" Screen		
	20					65	CS				-No. 1 Sand		
	21					70	CS						
	22												
	23				23.62 /	75	CS				-Natural Sand		
	- 24		SILTY CLAY, some medium gravel, gre	fine to coarse sand, some fine to ey, very poorly sorted, angular,	314.86	80	CS				and Gravel		
	26		saturated (TILL)			85	CS						
	27	/			27.13/ 311.35	00	<u> </u>				Contrad		
	28		SAND and fine GR	AVEL, poorly sorted, subrounded	27.43 / 311.05	90					Bentontite Chips		
	29			DCK	27.74/ 310.74								
	- 30		END OF BOREHOL	.E @ 21.14 m bgs									

D	RIL	LIN		Clair - Maltb	y Sub	SWG	ater	shed Stu	,	MW8-S			
Clie	ent: Ci	ty of G	iuelph	Date: August 10, 2016		:	Screen	Type: 52.5 mm P	VC So	:hed. 40	Stick Up	: 0.84 m	
Pro	ject A	rea: Cl	air - Maltby	Ground Elevation: 338.481 n	nasl	5	Screen	ed Interval: 6.10 -	7.62 r	n	Northing: 4815493.95		
Pro	ject No	o.(MSI)	23089	Total Depth: 7.62 m		5	Slot Siz		Easting: 566250.11				
Fie	ld Staf	f: D. M	lartin	Drill Rig: Foremost DR-12			Casing	Diameter: 52.5 m	m		Datum/Zone: NAD83 17T		
Dril	ler: Hi	ghlanc	l Water Well Drillin	g Inc Boring Diameter: 152 mm		:	Sand P	Pack: 5.18 - 7.62 n	ı				
m asl	m bgs	Lithology	Strati	graphic Description	Depth (m bgs)/ Elev. (m asl)	Sample ID	Sample Type	Blow Counts (N Value)	% Recovery	Con		bletion tails	
	. –0												
- 338 — -	 		fine to coarse SAN silt, brown, poorly damp to moist	D and fine to medium GRAVEL, trace sorted, angular to sub-rounded,	07 338.48								
- 337 — -	_ _ _					5	cs						
-	-2												
- 336												—Bentonite Grout	
-													
-	-3					10	cs					——52.5 mm Sched.	
-												40	
-													
-	4-4												
- 334 —			@4.57 m bgs: satu	rated		15	cs						
-	-5									<u>^</u>	^_	Coated	
-	1-											Bentonite Chips	
333	1												
-	-6					20	68						
-	+-					20	03					—No. 1 Sand	
332 —													
-	-7											——0.01" Screen	
-	╬				7 60 /	25	CS						
331 —] -				330.86	<u> </u>							
-			END OF BOREHOL	.E @ 7.62 m bgs									
-	 ↓												
330 —	╬												
-													
-	١٢٩												

NOTES:	0.00 to 6.10 m bgs logged from MW8-D m asl = metres above sea level
	m bgs = metres below ground surface CS = cyclone sample

DF	RIL	LIN	IG LOG	Clair - Maltby	y Sub	owa	ter	shed Stu	ıdy		Μ	W9-D	
Clien	t: Cit	y of G	iuelph	Date: August 4, 2016		ç	Screen	Type: 52.5 mm P	VC Scl	ned. 40	Stick Up:	0.55 m	
Proje	ect Ar	ea: Cl	air - Maltby	Ground Elevation: 350.505 m	nasl	S	Screene	ed Interval: 32.00	- 33.53	m	Northing:	4815294.75	
Proje	ct No	.(MSI)	23089	Total Depth: 37.03 m		S	Slot Siz	e: 0.01"			Easting: 566970.16		
Field	Staff	f: S. M	liller/J. Melchin	Drill Rig: Foremost DR-12		(Casing	Diameter: 52.5 m	m		Datum/Zone: NAD83 17T		
Drille	r: Hig	ghland	l Water Well Drillin	g Inc Boring Diameter: 152 mm		:	Sand P	ack: 29.26 - 36.58	3 m				
m asl	m bgs	Lithology	Strati	graphic Description	Depth (m bgs)/ Elev. (m asl)	Sample ID	Sample Type	Blow Counts (N Value)	% Recovery		Comp Deta	letion ails	
- 1	-0												
350 – 1 349 – 1	-1		GRAVELY SAND (f coarsening with de	ine gravel, medium to coarse sand) pth, brown, moderately well sorted,	0 / 350.51	5	CS						
348 -	-2		subrounded to rou @1.52 m bgs: som	nded, dry e silt, trace clay		10							
847 – 1 846 – 1	4					15	00						
345 -	5					15	00						
344	-7					20	CS						
343	8					25	CS					—152 mm Steel Casing	
341	-9 - 10					30	CS						
340 – – – – – – – – – – – – – – – – – – –	11					35	CS					Dantanita Ohina	
338 -	12					40	CS					—Bentonite Chips	
337	14					45	CS						
35	15		@ 15.24 m bgs: tra	ce silt		50	CS						
334 –	- 16		fine to medium SA	ND, brown, moderately well sorted,	16.00 / 334.50	55	CS					——52.5 mm Sched. 40	
333	18		medium to coarse	SAND and fine GRAVEL brown	17.53 / 332.98	60	CS						
331 –	- 19		moderately well so saturated	rted, subrounded to rounded,		65	CS					—Water Level = 333.51 masl	
30	21					70	CS					(August 24, 2016)	
328 -	22					75	CS						
327 –	23	· Δ .	medium to verv co	arse SAND trace fine gravel fining	23.62 /	00	00					──152 mm Casing Shoe	
326	25		slightly with depth	, brown, subrounded, saturated	320.00	00	00						
324 –	26					85	CS						
323 – 1 322 – 1	- 28				28.19/	90	CS			000	Ö	—Natural Sand	
321 -	29		very fine SANDY S well sorted, satura	ILT, fining downwards to silt, grey, ted	322.31	95	CS			ÖÖ	Ö	and Gravel	
320	31				31 24 /	100	CS						
319	32		fine to medium GR grey, subangular to	AVEL, trace to some coarse sand, o subrounded, saturated	319.26	105	CS						
317 -	- 33 - 34		5 ,,	,		110	CS			Ö		U.UT SCIEETI	
316 – 1 315 – 1	35					115	CS			ÖÖ			
314	- 36				36.58/	120	CS			No.		and Gravel —Coated	
313 –	- 37			оск/	37.03 /							Bentontite Chips	
312	39		END OF BOREHOL	.E @ 37.03 m bgs	313.47							0,1100	
311 ່													

	DF	RIL	LIN.	IG LOG	Clair - Maltby	Clair - Maltby Subwatershed Study							MW9-S	
C F F	Clien Proje Proje	t: Cit ct Ar	t y of G rea: Cl b.(MSI)	uelph air - Maltby : 23089	Date: August 8, 2016 Ground Elevation: 350.456 m Total Depth: 23.16 m	Screen Type:52.5 mm PVC Sched. 40maslScreened Interval:21.64 - 23.16 mSlot Size:0.01"						Stick Up: 0.46 m Northing: 4815292.49 Easting: 566972.15		
F	ield Drille	Staf r: Hi g	f: S.Mi ghland	iller/J. Melchin I Water Well Drillin	Drill Rig: Foremost DR-12 og Inc Boring Diameter: 152 mm		(Casing Sand P	Diameter: 52.5 m ack: 20.42 - 23.16	m 6 m		Datun	n/Zone: NAD83 17T	
	m asl Lithology Lithology			Strat	igraphic Description	Depth (m bgs)/ Elev. (m asl)	Sample ID Sample Bow Connes % Recovery				Completion Details			
350 349 348 347 346 345 344		-0 -1 -2 -3 4 5 6		GRAVELY SAND, 1 coarsening with do dry @1.52 m bgs: som	ine gravel, medium to coarse sand opth, brown, subrounded to rounded, e silt, trace clay	0 / 350.46	5 10 15 20	CS CS CS CS						
343 342 341 340 339 338 337 336							25 30 35 40 45	CS CS CS CS CS				•	 Bentonite Grout 52.5 mm Sched. 40 	
335 334 333 333		- 15 - 16 - 17 - 17 - 18		@ 15.24 m bgs: tra fine to medium SA dry medium to coarse subrounded to rou	ND, brown, moderately well sorted,	16.00 / 334.45 17.53 / 332.93	50 55 60	CS CS CS						
 331 330 329 328 327 		- 19 - 20 - 21 - 21 - 22 - 22 - 23 - 23 - 24		END OF BOREHOI	.E @ 23.16 m bgs	23.16 / 327.29	65 70 75	CS CS CS					Water Level = 333.45 masl (August 24, 2016) Bentonite Chips No. 1 Sand 0.01" Screen	

NOTES: 0.00 to 18.29 m bgs logged from MW9-D m asl = metres above sea level m bgs = metres below ground surface CS = cyclone sample

Appendix B2 Geophysical Logs

Client: Matrix Solutions Well Name: MW1-D Location: 1 Kilkenny Guelph Project No: 033-188 Measuring Point: Ground Surface Measuring Point Elev: N/A Logged By: J. Dion Logging Date: September 23, 2016

Client: Matrix Solutions Inc Well Name: MW2-D Location: 12 Kilkenny Pl. Guelph Project No: 033-188 Measuring Point: Ground Surface Measuring Point Elev: N/A Logged By: J. Dion Logging Date: September 23, 2016

Client: Matrix Solutions Well Name: MW3-D Location: 500 Maltby Guelph Project No: 033-188 Measuring Point: Ground Surface Measuring Point Elev: N/A Logged By: J. Dion Logging Date: September 23, 2015

Appendix B3 Monitoring Well Hydrographs

Precipitation - AFW: Data set from rain gauge installed by AMEC Foster-Wheeler at 500 Maltby Rd. E. Precipitation - YKF: Data set from weather station at Region of Waterloo International Airport (YKF)

Precipitation - AFW: Data set from rain gauge installed by AMEC Foster-Wheeler at 500 Maltby Rd. E. Precipitation - YKF: Data set from weather station at Region of Waterloo International Airport (YKF).

Precipitation - AFW: Data set from rain gauge installed by AMEC Foster-Wheeler at 500 Maltby Rd. E. Precipitation - YKF: Data set from weather station at Region of Waterloo International Airport (YKF).

Precipitation - AFW: Data set from rain gauge installed by AMEC Foster-Wheeler at 500 Maltby Rd. E. Precipitation - YKF: Data set from weather station at Region of Waterloo International Airport (YKF).

Precipitation - AFW: Data set from rain gauge installed by AMEC Foster-Wheeler at 500 Maltby Rd. E. Precipitation - YKF: Data set from weather station at Region of Waterloo International Airport (YKF).

Precipitation - AFW: Data set from rain gauge installed by AMEC Foster-Wheeler at 500 Maltby Rd. E. Precipitation - YKF: Data set from weather station at Region of Waterloo International Airport (YKF).

Precipitation - AFW: Data set from rain gauge installed by AMEC Foster-Wheeler at 500 Maltby Rd. E. Precipitation - YKF: Data set from weather station at Region of Waterloo International Airport (YKF).

Precipitation - AFW: Data set from rain gauge installed by AMEC Foster-Wheeler at 500 Maltby Rd. E. Precipitation - YKF: Data set from weather station at Region of Waterloo International Airport (YKF).

Precipitation - AFW: Data set from rain gauge installed by AMEC Foster-Wheeler at 500 Maltby Rd. E. Precipitation - YKF: Data set from weather station at Region of Waterloo International Airport (YKF).

Precipitation - AFW: Data set from rain gauge installed by AMEC Foster-Wheeler at 500 Maltby Rd. E. Precipitation - YKF: Data set from weather station at Region of Waterloo International Airport (YKF).

Appendix B4 Laboratory Certificates of Analysis

MATRIX SOLUTIONS INC. ATTN: Scott Miller 31 Beacon Point Court Breslau ON NOB 1M0 Date Received: 19-OCT-16 Report Date: 27-OCT-16 09:12 (MT) Version: FINAL

Client Phone: 519-772-3777

Certificate of Analysis

Lab Work Order #: L1845890 Project P.O. #: CLAIRE-MALTBY Job Reference: 23089-528 C of C Numbers: 81837 Legal Site Desc:

Gayle Braun Senior Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 309 Exeter Road Unit #29, London, ON N6L 1C1 Canada | Phone: +1 519 652 6044 | Fax: +1 519 652 0671 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1845890 CONTD.... PAGE 2 of 7 27-OCT-16 09:12 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1845890-1 WATER 19-OCT-16 10:30 23089161019001 MW7	L1845890-2 WATER 19-OCT-16 12:30 23089161019002 MW8D	L1845890-3 WATER 19-OCT-16 12:50 23089161019003 MW8S	L1845890-4 WATER 19-OCT-16 15:30 23089161019004 MW6D	L1845890-5 WATER 19-OCT-16 15:55 23089161019005 MW6S
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (umhos/cm)	696	1180	569	460	602
	pH (pH units)	7.44	7.23	7.25	7.64	7.53
	Total Dissolved Solids (mg/L)	DLDS 386	639 DLDS	DLDS 295	DLDS 259	DLDS 351
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	276	336	288	229	282
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<10	<10	<10	<10	<10
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<10	<10	<10	<10	<10
	Alkalinity, Total (as CaCO3) (mg/L)	276	336	288	229	282
	Chloride (CI) (mg/L)	39.6	189 DLDS	14.4	4.32	9.21
	Computed Conductivity (uS/cm)	630	1060	493	416	561
	Conductivity % Difference (%)	-9.8	-10.7	-14.3	-10.0	-7.1
	Hardness (as CaCO3) (mg/L)	325	388	288	213	295
	Ion Balance (%)	109	101	112	112	108
	Langelier Index	0.3	0.3	0.2	0.3	0.4
	Nitrate (as N) (mg/L)	0.318	1.49	1.04	<0.020	<0.020
	Nitrite (as N) (mg/L)	0.028	<0.050	<0.010	<0.010	<0.010
	Total Kjeldahl Nitrogen (mg/L)	<0.15	0.51	0.76	0.19	0.28
	Saturation pH (pH)	7.11	6.95	7.08	7.35	7.16
	TDS (Calculated) (mg/L)	383	656	303	254	348
	Sulfate (SO4) (mg/L)	47.4	32.0	4.79	24.7	55.6
	Anion Sum (me/L)	6.67	11.6	5.31	4.40	6.05
	Cation Sum (me/L)	7.27	11.7	5.96	4.94	6.52
	Cation - Anion Balance (%)	4.3	0.3	5.8	5.7	3.8
Dissolved Metals	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Aluminum (AI)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Antimony (Sb)-Dissolved (mg/L)	0.00017	0.00012	0.00036	<0.00010	0.00030
	Arsenic (As)-Dissolved (mg/L)	0.00037	<0.00010	0.00028	0.00166	0.00104
	Barium (Ba)-Dissolved (mg/L)	0.127	0.144	0.0167	0.121	0.124
	Beryllium (Be)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)-Dissolved (mg/L)	<0.010	0.013	0.011	0.012	0.014
	Cadmium (Cd)-Dissolved (mg/L)	0.000015	0.000067	0.000043	<0.000010	<0.000010
	Calcium (Ca)-Dissolved (mg/L)	79.3	105	77.7	50.9	69.2
	Cesium (Cs)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Chromium (Cr)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)-Dissolved (mg/L)	0.00062	0.00085	0.00018	0.00013	0.00020
	Copper (Cu)-Dissolved (mg/L)	0.00103	0.00201	0.00158	0.00037	0.00046
	Iron (Fe)-Dissolved (mg/L)	0.024	< 0.010	<0.010	0.067	0.012

L1845890 CONTD.... PAGE 3 of 7 27-OCT-16 09:12 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1845890-6 WATER 19-OCT-16 17:15 23089161019006 MW5S	L1845890-7 WATER 19-OCT-16 17:30 23089161019007 MW5D		
Grouping	Analyte				
WATER					
Physical Tests	Conductivity (umhos/cm)	750	663		
	pH (pH units)	7.17	7.17		
	Total Dissolved Solids (mg/L)	DLDS 430	DLDS 396		
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	327	366		
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<10	<10		
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<10	<10		
	Alkalinity, Total (as CaCO3) (mg/L)	327	366		
	Chloride (Cl) (mg/L)	10.0	11.9		
	Computed Conductivity (uS/cm)	712	617		
	Conductivity % Difference (%)	-5.3	-7.2		
	Hardness (as CaCO3) (mg/L)	410	347		
	Ion Balance (%)	112	101		
	Langelier Index	0.2	0.3		
	Nitrate (as N) (mg/L)	0.429	<0.020		
	Nitrite (as N) (mg/L)	0.056	<0.010		
	Total Kjeldahl Nitrogen (mg/L)	0.62	4.1		
	Saturation pH (pH)	6.94	6.92		
	TDS (Calculated) (mg/L)	446	394		
	Sulfate (SO4) (mg/L)	89.4	36.0		
	Anion Sum (me/L)	7.54	7.09		
	Cation Sum (me/L)	8.48	7.16		
	Cation - Anion Balance (%)	5.9	0.4		
Dissolved Metals	Dissolved Metals Filtration Location	FIELD	FIELD		
	Aluminum (AI)-Dissolved (mg/L)	<0.0050	<0.0050		
	Antimony (Sb)-Dissolved (mg/L)	0.00041	<0.00010		
	Arsenic (As)-Dissolved (mg/L)	0.00333	0.00080		
	Barium (Ba)-Dissolved (mg/L)	0.126	0.145		
	Beryllium (Be)-Dissolved (mg/L)	<0.00010	<0.00010		
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050	<0.000050		
	Boron (B)-Dissolved (mg/L)	<0.010	<0.010		
	Cadmium (Cd)-Dissolved (mg/L)	0.000019	<0.000010		
	Calcium (Ca)-Dissolved (mg/L)	105	94.3		
	Cesium (Cs)-Dissolved (mg/L)	<0.000010	0.000011		
	Chromium (Cr)-Dissolved (mg/L)	<0.00050	<0.00050		
	Cobalt (Co)-Dissolved (mg/L)	0.00092	0.00011		
	Copper (Cu)-Dissolved (mg/L)	0.00046	<0.00020		
	Iron (Fe)-Dissolved (mg/L)	0.346	2.25		

L1845890 CONTD.... PAGE 4 of 7 27-OCT-16 09:12 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1845890-1 WATER 19-OCT-16 10:30 23089161019001 MW7	L1845890-2 WATER 19-OCT-16 12:30 23089161019002 MW8D	L1845890-3 WATER 19-OCT-16 12:50 23089161019003 MW8S	L1845890-4 WATER 19-OCT-16 15:30 23089161019004 MW6D	L1845890-5 WATER 19-OCT-16 15:55 23089161019005 MW6S
Grouping	Analyte					
WATER						
Dissolved Metals	Lead (Pb)-Dissolved (mg/L)	0.000155	0.000614	0.000051	<0.000050	<0.000050
	Lithium (Li)-Dissolved (mg/L)	0.0032	0.0034	<0.0010	0.0027	0.0017
	Magnesium (Mg)-Dissolved (mg/L)	30.7	30.5	22.8	20.8	29.7
	Manganese (Mn)-Dissolved (mg/L)	0.0787	0.0434	0.00707	0.0154	0.0453
	Molybdenum (Mo)-Dissolved (mg/L)	0.00118	0.000662	0.000655	0.00230	0.00323
	Nickel (Ni)-Dissolved (mg/L)	0.00174	0.00310	0.00945	<0.00050	<0.00050
	Phosphorus (P)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Potassium (K)-Dissolved (mg/L)	1.55	3.18	1.29	1.28	2.20
	Rubidium (Rb)-Dissolved (mg/L)	0.00127	0.00225	0.00069	0.00075	0.00159
	Selenium (Se)-Dissolved (mg/L)	0.000098	0.000251	0.000132	<0.000050	0.000053
	Silicon (Si)-Dissolved (mg/L)	6.12	5.51	3.66	6.43	4.20
	Silver (Ag)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Sodium (Na)-Dissolved (mg/L)	17.1	88.3	4.17	15.1	13.0
	Strontium (Sr)-Dissolved (mg/L)	0.114	0.180	0.115	0.123	0.256
	Sulfur (S)-Dissolved (mg/L)	15.5	10.9	1.48	8.63	18.1
	Tellurium (Te)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Thallium (TI)-Dissolved (mg/L)	0.000018	0.000048	<0.000010	<0.000010	<0.000010
	Thorium (Th)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Tin (Sn)-Dissolved (mg/L)	0.00055	<0.00010	0.00123	0.00016	0.00061
	Titanium (Ti)-Dissolved (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
	Tungsten (W)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Uranium (U)-Dissolved (mg/L)	0.00148	0.000649	0.000231	0.00202	0.00545
	Vanadium (V)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Dissolved (mg/L)	0.0149	0.192	0.0101	0.0038	0.0509
	Zirconium (Zr)-Dissolved (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030

L1845890 CONTD.... PAGE 5 of 7 27-OCT-16 09:12 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1845890-6 WATER 19-OCT-16 17:15 23089161019006 MW5S	L1845890-7 WATER 19-OCT-16 17:30 23089161019007 MW5D		
Grouping	Analyte				
WATER					
Dissolved Metals	Lead (Pb)-Dissolved (mg/L)	0.000154	<0.000050		
	Lithium (Li)-Dissolved (mg/L)	0.0043	0.0018		
	Magnesium (Mg)-Dissolved (mg/L)	35.8	27.0		
	Manganese (Mn)-Dissolved (mg/L)	0.159	0.0829		
	Molybdenum (Mo)-Dissolved (mg/L)	0.0235	0.000176		
	Nickel (Ni)-Dissolved (mg/L)	0.00372	0.00090		
	Phosphorus (P)-Dissolved (mg/L)	<0.050	<0.050		
	Potassium (K)-Dissolved (mg/L)	1.63	0.837		
	Rubidium (Rb)-Dissolved (mg/L)	0.00240	0.00075		
	Selenium (Se)-Dissolved (mg/L)	0.000167	<0.000050		
	Silicon (Si)-Dissolved (mg/L)	4.01	9.08		
	Silver (Ag)-Dissolved (mg/L)	<0.000050	<0.000050		
	Sodium (Na)-Dissolved (mg/L)	5.53	4.71		
	Strontium (Sr)-Dissolved (mg/L)	0.143	0.135		
	Sulfur (S)-Dissolved (mg/L)	31.0	11.6		
	Tellurium (Te)-Dissolved (mg/L)	<0.00020	<0.00020		
	Thallium (TI)-Dissolved (mg/L)	0.000020	<0.000010		
	Thorium (Th)-Dissolved (mg/L)	<0.00010	<0.00010		
	Tin (Sn)-Dissolved (mg/L)	<0.00010	<0.00010		
	Titanium (Ti)-Dissolved (mg/L)	<0.00030	0.00038		
	Tungsten (W)-Dissolved (mg/L)	<0.00010	<0.00010		
	Uranium (U)-Dissolved (mg/L)	0.0240	0.000113		
	Vanadium (V)-Dissolved (mg/L)	<0.00050	0.00062		
	Zinc (Zn)-Dissolved (mg/L)	0.0276	0.0019		
	Zirconium (Zr)-Dissolved (mg/L)	<0.00030	0.00051		

Reference Information

Qualifier

Applies to Sample Number(s)

QC Samples with Qualifiers & Comments:

Parameter

QC Type Description

Matrix Spike		Barium (Ba)-Dissolved	MS-B	L1845890-1, -2, -3, -4, -5, -6, -7
Matrix Spike		Calcium (Ca)-Dissolved	MS-B	L1845890-1, -2, -3, -4, -5, -6, -7
Matrix Spike		Magnesium (Mg)-Dissolved	MS-B	L1845890-1, -2, -3, -4, -5, -6, -7
Matrix Spike		Manganese (Mn)-Dissolved	MS-B	L1845890-1, -2, -3, -4, -5, -6, -7
Matrix Spike		Silicon (Si)-Dissolved	MS-B	L1845890-1, -2, -3, -4, -5, -6, -7
Matrix Spike		Sodium (Na)-Dissolved	MS-B	L1845890-1, -2, -3, -4, -5, -6, -7
Matrix Spike		Strontium (Sr)-Dissolved	MS-B	L1845890-1, -2, -3, -4, -5, -6, -7
Matrix Spike		Sulfur (S)-Dissolved	MS-B	L1845890-1, -2, -3, -4, -5, -6, -7
Matrix Spike		Uranium (U)-Dissolved	MS-B	L1845890-1, -2, -3, -4, -5, -6, -7
Matrix Spike		Sulfate (SO4)	MS-B	L1845890-1, -2, -3, -4, -5, -6, -7
Qualifiers for Individ	dual Parameters	Listed:		
Qualifier Des	cription			
DLDS Dete	ection Limit Raise	d: Dilution required due to high Dissolv	ed Solids / Elec	trical Conductivity.
DLM Dete	ection Limit Adjus	ted due to sample matrix effects (e.g. o	chemical interfer	rence, colour, turbidity).
MS-B Matr	ix Spike recovery	v could not be accurately calculated due	e to high analyte	e background in sample.
ast Mathed Pofera	ncoc:			
ALS Test Code	Matrix	Test Description		Method Reference**
ALK-SPEC-WT	Water	Speciated Alkalinity		EPA 310.2
CL-IC-WT	Water	Chloride by IC		EPA 300 1 (mod)
Inorganic anions are	analvzed by Ion (Chromatography with conductivity and/	or UV detection.	
Environmental Protect	tion Act (July 1, 2	n the Protocol for Analytical Methods U: 2011).	sed in the Asses	ssment of Properties under Part XV.1 of the
EC-WT	Water	Conductivity		APHA 2510 B
Water samples can b	e measured dired	ctly by immersing the conductivity cell in	nto the sample.	
IONBALANCE-OP03-\	NT Water	Detailed Ion Balance Calculation		APHA 1030E, 2330B, 2510A
MET-D-CCMS-WT	Water	Dissolved Metals in Water by CRC	ICPMS	APHA 3030B/6020A (mod)
Water samples are fil	tered (0.45 um),	preserved with nitric acid, and analyzed	d by CRC ICPM	S.
Method Limitation (re	· Sulfur)· Sulfide :	and volatile sulfur species may not be r	ecovered by this	s method
Environmental Protect	tion Act (July 1, 2	1 the Protocol for Analytical Methods U: 2011).	sed in the Asses	ssment of Properties under Part XV.1 of the
NO2-IC-WT	Water	Nitrite in Water by IC		EPA 300.1 (mod)
Inorganic anions are	analyzed by Ion (Chromatography with conductivity and/o	or UV detection.	
NO3-IC-WT	Water	Nitrate in Water by IC		EPA 300 1 (mod)
Inorganic anions are	analyzed by Ion (Chromatography with conductivity and/	or UV detection	
PH-ALK-WT	Water	рН		APHA 4500 H-Electrode
Water samples are a	nalyzed directly b	y a calibrated pH meter.		
SO4-IC-N-WT	Water	Sulfate in Water by IC		EPA 300.1 (mod)
Inorganic anions are	analyzed by Ion (Chromatography with conductivity and/o	or UV detection.	
SOLIDS-TDS-WT	Water	Total Dissolved Solids		APHA 2540C
A well-mixed sample	is filtered though	glass fibres filter. A known volume of	the filtrate is eva	aporated and dried at 105–5 C overnight and then
TKN-WT	Water	Total Kieldahl Nitrogen		APHA 4500-N
	valor			

Sample is digested to convert the TKN to ammonium sulphate. The ammonia ions are heated to produce a colour complex. The absorbance measured by the instrument is proportional to the concentration of ammonium sulphate in the sample and is reported as TKN.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

Reference Information

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location WT ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

81837

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorder:	L184589	0	Report Dat	te: 27-OCT-16	Pa	ge 1 of 6
Client: Contact:	MATRIX SOLUTIONS IN 31 Beacon Point Court Breslau ON N0B 1M0 Scott Miller	IC.						
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-SPEC-WT	Water							
Batch R	3576806							
WG2415367-3 Alkalinity, Tota	CRM Il (as CaCO3)	WT-ALK-CRN	I 102.8		%		80-120	20-OCT-16
WG2415367-2 Alkalinity, Tota	LCS Il (as CaCO3)		102.5		%		85-115	20-OCT-16
WG2415367-1 Alkalinity, Tota	MB Il (as CaCO3)		<10		mg/L		10	20-OCT-16
CL-IC-WT	Water							
Batch R WG2415943-12 Chloride (Cl)	3579307 2 LCS		100.7		%		70-130	23-OCT-16
WG2415943-7 Chloride (Cl)	LCS		101.0		%		70-130	23-OCT-16
WG2415943-17 Chloride (Cl)	I MB		<0.50		mg/L		0.5	23-OCT-16
WG2415943-6 Chloride (Cl)	MB		<0.50		mg/L		0.5	23-OCT-16
EC-WT	Water							
Batch R	3575583							
WG2414036-14 Conductivity	4 LCS		102.1		%		90-110	20-OCT-16
WG2414036-13 Conductivity	3 MB		<3.0		umhos/	/cm	3	20-OCT-16
MET-D-CCMS-WT	Water							
Batch R	3576471							
Aluminum (Al)	-Dissolved		97.1		%		80-120	20-OCT-16
Antimony (Sb)	-Dissolved		97.4		%		80-120	20-OCT-16
Arsenic (As)-D	vissolved		96.9		%		80-120	20-OCT-16
Barium (Ba)-D	issolved		101.5		%		80-120	20-OCT-16
Beryllium (Be)	-Dissolved		95.4		%		80-120	20-OCT-16
Bismuth (Bi)-D	vissolved		101.0		%		80-120	20-OCT-16
Boron (B)-Diss	solved		93.5		%		80-120	20-OCT-16
Cadmium (Cd))-Dissolved		95.4		%		80-120	20-OCT-16
Calcium (Ca)-l	Dissolved		97.3		%		80-120	20-OCT-16
Cesium (Cs)-E	Dissolved		97.2		%		80-120	20-OCT-16
Chromium (Cr)-Dissolved		95.8		%		80-120	20-OCT-16
Cobalt (Co)-Di	ssolved		96.3		%		80-120	20-OCT-16

		Workorder	: L184589	00	Report Date: 2	27-OCT-16	Pa	ge 2 of 6
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-WT	Water							
Batch R3570	6471							
WG2415171-2 L	CS		00 F		0/			
Copper (Cu)-Disso	ived		96.5		%		80-120	20-OCT-16
Iron (Fe)-Dissolved	1		93.5		%		80-120	20-OCT-16
Lead (PD)-Dissoive			97.6		%		80-120	20-OCT-16
			93.9		%		80-120	20-OCT-16
Magnesium (Mg)-L	Dissolved		96.9		%		80-120	20-OCT-16
Manganese (Mn)-L	Dissolved		97.5		%		80-120	20-OCT-16
Molybdenum (Mo)-	Dissolved		94.4		%		80-120	20-OCT-16
Nickel (Ni)-Dissolv	ed		96.2		%		80-120	20-OCT-16
Phosphorus (P)-Di	ssolved		92.5		%		80-120	20-OCT-16
Potassium (K)-Diss	solved		97.0		%		80-120	20-OCT-16
Rubidium (Rb)-Dis	solved		101.7		%		80-120	20-OCT-16
Selenium (Se)-Diss	solved		95.6		%		80-120	21-OCT-16
Silicon (Si)-Dissolv	ed		101.3		%		80-120	20-OCT-16
Silver (Ag)-Dissolv	ed		100.8		%		80-120	21-OCT-16
Sodium (Na)-Disso	lved		97.5		%		80-120	20-OCT-16
Strontium (Sr)-Diss	solved		99.8		%		80-120	20-OCT-16
Sulfur (S)-Dissolve	d		96.0		%		80-120	20-OCT-16
Tellurium (Te)-Diss	solved		96.3		%		80-120	20-OCT-16
Thallium (TI)-Disso	lved		96.0		%		80-120	20-OCT-16
Thorium (Th)-Disso	olved		94.6		%		80-120	20-OCT-16
Tin (Sn)-Dissolved			94.1		%		80-120	20-OCT-16
Titanium (Ti)-Disso	olved		95.9		%		80-120	20-OCT-16
Tungsten (W)-Diss	olved		97.5		%		80-120	20-OCT-16
Uranium (U)-Disso	lved		99.2		%		80-120	20-OCT-16
Vanadium (V)-Diss	olved		97.5		%		80-120	20-OCT-16
Zinc (Zn)-Dissolved	d		91.7		%		80-120	20-OCT-16
Zirconium (Zr)-Dise	solved		91.4		%		80-120	20-OCT-16
WG2415171-1 N	IB							
Aluminum (AI)-Diss	solved		<0.0050		mg/L		0.005	20-OCT-16
Antimony (Sb)-Diss	solved		<0.00010)	mg/L		0.0001	20-OCT-16
Arsenic (As)-Disso	lved		<0.00010)	mg/L		0.0001	20-OCT-16
Barium (Ba)-Dissol	lved		<0.00010		mg/L		0.0001	20-OCT-16
Beryllium (Be)-Diss	solved		<0.00010)	mg/L		0.0001	20-OCT-16
Bismuth (Bi)-Disso	lved		<0.00005	50	mg/L		0.00005	20-OCT-16

		Workorder	: L184589	0	Report Date: 2	7-OCT-16	Pa	ge 3 of 6
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-WT	Water							
Batch R357	6471							
WG2415171-1 N	MB		-0.040				0.04	
Condensioner (Cod) Dis			<0.010	0	mg/L		0.01	20-OCT-16
Cadmium (Cd)-Dis	ssolved		<0.00001	0	mg/L		0.00001	20-OCT-16
	olved		<0.050	0	mg/L		0.05	20-OCT-16
Cesium (Cs)-Disso			<0.00001	0	mg/L		0.00001	20-OCT-16
Chromium (Cr)-Dis	ssolved		<0.00050		mg/L		0.0005	20-OCT-16
Cobalt (Co)-Dissol	vea		<0.00010		mg/L		0.0001	20-OCT-16
Copper (Cu)-Disso	oivea		< 0.00020		mg/L		0.0002	20-OCT-16
Iron (Fe)-Dissolved	a		< 0.010	•	mg/L		0.01	20-OCT-16
Lead (Pb)-Dissolve	ed		< 0.00005	0	mg/L		0.00005	20-OCT-16
			< 0.0010		mg/L		0.001	20-OCT-16
Magnesium (Mg)-L			< 0.050		mg/L		0.05	20-OCT-16
Manganese (Mn)-L			< 0.00050	•	mg/L		0.0005	20-OCT-16
Molybdenum (Mo)-	-Dissolved		< 0.00005	0	mg/L		0.00005	20-OCT-16
Nickel (Ni)-Dissolv	ed		<0.00050		mg/L		0.0005	20-OCT-16
Phosphorus (P)-Di	issolved		<0.050		mg/L		0.05	20-OCT-16
Potassium (K)-Dis	solved		<0.050		mg/L		0.05	20-OCT-16
Rubidium (Rb)-Dis	solved		<0.00020		mg/L		0.0002	20-OCT-16
Selenium (Se)-Dis	solved		<0.00005	0	mg/L		0.00005	21-OCT-16
Silicon (Si)-Dissolv	ved		<0.050		mg/L		0.05	20-OCT-16
Silver (Ag)-Dissolv	red		< 0.00005	0	mg/L		0.00005	21-OCT-16
Sodium (Na)-Disso	olved		<0.50		mg/L		0.5	20-OCT-16
Strontium (Sr)-Dise	solved		<0.0010		mg/L		0.001	20-OCT-16
Sulfur (S)-Dissolve	ed		<0.50		mg/L		0.5	20-OCT-16
Tellurium (Te)-Dise	solved		<0.00020		mg/L		0.0002	20-OCT-16
Thallium (TI)-Disso	blved		<0.00001	0	mg/L		0.00001	20-OCT-16
Thorium (Th)-Diss	olved		<0.00010		mg/L		0.0001	20-OCT-16
Tin (Sn)-Dissolved	l		<0.00010		mg/L		0.0001	20-OCT-16
Titanium (Ti)-Disso	olved		<0.00030		mg/L		0.0003	20-OCT-16
Tungsten (W)-Diss	solved		<0.00010		mg/L		0.0001	20-OCT-16
Uranium (U)-Disso	lved		< 0.00001	0	mg/L		0.00001	20-OCT-16
Vanadium (V)-Diss	solved		<0.00050		mg/L		0.0005	20-OCT-16
Zinc (Zn)-Dissolve	d		<0.0010		mg/L		0.001	20-OCT-16
Zirconium (Zr)-Dis	solved		<0.00030		mg/L		0.0003	20-OCT-16

NO2-IC-WT

Water

		Workorder: L1845890 R		Report Date: 27-	-OCT-16	Page 4 of 6				
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed		
NO2-IC-WT	Water									
Batch R357930)7									
WG2415943-12 LCS Nitrite (as N)	5		103.5		%		70-130	23-OCT-16		
WG2415943-7 LCS Nitrite (as N)	5		104.0		%		70-130	23-OCT-16		
WG2415943-11 MB Nitrite (as N)			<0.010		mg/L		0.01	23-OCT-16		
WG2415943-6 MB Nitrite (as N)			<0.010		mg/L		0.01	23-OCT-16		
NO3-IC-WT	Water									
Batch R357930)7									
WG2415943-12 LCS Nitrate (as N)	5		100.2		%		70-130	23-OCT-16		
WG2415943-7 LCS Nitrate (as N)	5		100.5		%		70-130	23-OCT-16		
WG2415943-11 MB Nitrate (as N)			<0.020		mg/L		0.02	23-OCT-16		
WG2415943-6 MB Nitrate (as N)			<0.020		mg/L		0.02	23-OCT-16		
PH-ALK-WT	Water									
Batch R357557	75									
WG2414537-10 LCS рН	;		6.97		pH units		6.9-7.1	20-OCT-16		
SO4-IC-N-WT	Water									
Batch R357930)7									
WG2415943-12 LCS Sulfate (SO4)	;		100.8		%		90-110	23-OCT-16		
WG2415943-7 LCS Sulfate (SO4)	;		100.6		%		90-110	23-OCT-16		
WG2415943-11 MB Sulfate (SO4)			<0.30		mg/L		0.3	23-OCT-16		
WG2415943-6 MB Sulfate (SO4)			<0.30		mg/L		0.3	23-OCT-16		
SOLIDS-TDS-WT	Water									
Batch R358030 WG2418394-2 LCS)2		05.4		%		95 445	25 OOT 40		
			00.7		/0		00-110	20-001-10		

WG2418394-1 MB

		Workorder: L1845890			Report Date: 2	7-OCT-16	Page 5 of 6				
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed			
SOLIDS-TDS-WT	Water										
BatchR3580302WG2418394-1MBTotal Dissolved Solids			<10		mg/L		10	25-OCT-16			
TKN-WT	Water										
Batch R3577223 WG2415564-2 LCS					0/						
I otal Kjeldahl Nitrogen			98.3		%		75-125	21-OCT-16			
Total Kjeldahl Nitrogen			<0.15		mg/L		0.15	21-OCT-16			

Workorder: L1845890

Report Date: 27-OCT-16

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

L1845890 Esmith 48 19-00-16 190

		latrix Sol	Utions In & engineeri	IN G		COC #	м 818	37			Lab Suba Lab Agre	nitted to ement r	A :	LS V	vate 993	Page	:_/	of	
		Invoice to:	Require Report:Y N_		Copy of	Report to	b :				Lab Job	ID:							
Comp	bany Name:	MATRIX S	SOLUTIANS		Matrix Sc	lutions - Da	ita Managemen	ıt		-			0.7	00.0	- 00				
Conta	act Name:	Scott Mil			Suite 200	Suite 200, 150 - 13th Avenue SW					Matrix Project #: 25089 528								
Addro	95S:	31 Bearcon +	POINT COURT		Calgary,	Alberta, Ca	nada			-	Matrix Pro	j. Name:	<u>_(1a</u>	<u>re-1</u>	Mart-	tby			
Dhan		Bresha	00	PC:	Pb: 403.2	27,0606		Eax: 403-	263-2403	-	Location:	Namo(c)	. 5.	AA' 11-00					
Phon	e/ FdA#:	Pri.		-dx.	Fax draft	copy of inv	oice to Matrix S	olutions In	с.	-	Dampiers	Name(5)							
AFE #	*:					000) 0				<u> </u>			Ana	ilysis Re	quired				
REGI	JLATORY REC Alberta Tier 1 SPIGEC	QUIREMENTS: (check)			QUESTED: ase ensure you cont Turnaround	act the lab) <u>f</u>	Due Date:			5									Jumber
	Canadian Drin	quatic Lite (Low Level Meta oking Water	ais)	Additional	Smiller	@ n at	c: x ~ Calu-	mainx-sol	Com	10				1					e
	BC Regs	ining trace		Emails		C Mart				100									- Idu
	Other:	149006.00	2.03							16									Sar
	Sa (14 digi	mple Number ts only) yr-mth-day	Sample Point Name	Depth (cm)	Sample Type	Date/Ti	me Sampled	Quan Jars	tity # of Bags	Ò									Lab
1	23080	1161019001	MW7		Water	Oct 19	10:30	3		X									1
2		1 002	MW8D		1		12:30	3	-	X									2
3		003	MW85	~			12:50	3	(X									3
4		004	MWGD	~		T	15:30	3	-	X									4
5		005	MW65	<u> </u>			15:55	3		X									S
6		Y 006	MW55	~		1	17:15	3	-	X									Q
7	2308	7161019 007	MWSD	~	V	act 10	1 17:30	3	-	X									7
8		•																	
9										L									
10										HI				lit da no					
11																			
12									Τ.	L	184589	90-CO	FC	ING IN MIC	-				
12	ł								†.						-		++		
14															†		+ +		
15										+			_	-			+		
*For	metals in wate	r samples indicate if you	want Total (T) Dissolver	(D) or Extractable	e (E) as part of "Ana	lysis Requi	red"	Pres	Served/Filtere			17		17			17		
Relin	quished by:		Ailbo	Date/Time:	oct 19/10	19:30	2	Received	by: <u>E</u>	ΥS	10	<u> </u>		Date/	Time:	ÓC	119	120	16
Sign	ature:	100	m	<u>.</u>	<i>u</i>			Signature	1.1.	<u>γ</u> ν	VI	100	20		•		19	:3	2
СОМ	MENTS/SPECI	IAL INSTRUCTIONS	Co	<u>Il Scot</u>	t with	any	quest	ions	70	<u>s</u>	281	15	17_	<u> </u>				+	
			_ Soe	Quote_	Q5859	50	Meto	45	are	a_i .	550W	ed	€ <u></u>	tiele	<u>l f</u>	14	5-00	1	
													TE	mp.	on a	mvu	J; F	3.	ECS.

MATRIX SOLUTIONS INC. ATTN: Scott Miller 31 Beacon Point Court Breslau ON NOB 1M0 Date Received: 20-OCT-16 Report Date: 28-OCT-16 14:49 (MT) Version: FINAL

Client Phone: 519-772-3777

Certificate of Analysis

Lab Work Order #: L1846629 Project P.O. #: NOT SUBMIT Job Reference: 23089-528 C C of C Numbers: Legal Site Desc:

NOT SUBMITTED 23089-528 CLAIRE-MALTBY

Gayle Braun Senior Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 309 Exeter Road Unit #29, London, ON N6L 1C1 Canada | Phone: +1 519 652 6044 | Fax: +1 519 652 0671 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1846629 CONTD.... PAGE 2 of 7 28-OCT-16 14:49 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1846629-1 WATER 20-OCT-16 11:30 23089161020001- MW25	L1846629-2 WATER 20-OCT-16 11:40 23089161020002- MW2D	L1846629-3 WATER 20-OCT-16 12:05 23089161020003- MW1D	L1846629-4 WATER 20-OCT-16 12:15 23089161020004- MW1S	L1846629-5 WATER 20-OCT-16 14:30 23089161020005- MW3D
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (umhos/cm)	862	723	411	947	517
	pH (pH units)	6.85	7.15	7.96	7.20	7.54
	Total Dissolved Solids (mg/L)	DLDS 495	DLDS 416	DLDS 246	DLDS	DLDS 293
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	375	354	188	291	248
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<10	<10	<10	<10	<10
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<10	<10	<10	<10	<10
	Alkalinity, Total (as CaCO3) (mg/L)	375	354	188	291	248
	Chloride (Cl) (mg/L)	61.3	18.4	13.2 DLDS	106	12.6
	Computed Conductivity (uS/cm)	732	631	365	822	457
	Conductivity % Difference (%)	-16.3	-13.5	-11.8	-14.2	-12.2
	Hardness (as CaCO3) (mg/L)	349	352	131	339	249
	Ion Balance (%)	101	106	104	100	103
	Langelier Index	0.0	0.2	0.2	0.1	0.3
	Nitrate (as N) (mg/L)	<0.020	<0.020	<0.10	2.12	<0.020
	Nitrite (as N) (mg/L)	<0.010	<0.010	<0.050	<0.010	<0.010
	Total Kjeldahl Nitrogen (mg/L)	0.48	0.44	0.67	0.43	0.23
	Saturation pH (pH)	6.90	6.92	7.81	7.07	7.27
	TDS (Calculated) (mg/L)	464	399	223	507	278
	Sulfate (SO4) (mg/L)	20.2	34.9	23.4	49.3	27.7
	Anion Sum (me/L)	8.30	7.05	3.96	8.95	5.02
	Cation Sum (me/L)	8.42	7.45	4.10	8.95	5.19
	Cation - Anion Balance (%)	0.7	2.7	1.7	0.0	1.7
Dissolved Metals	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Aluminum (AI)-Dissolved (mg/L)	0.0064	<0.0050	0.0070	<0.0050	<0.0050
	Antimony (Sb)-Dissolved (mg/L)	0.00049	0.00046	0.00024	<0.00010	<0.00010
	Arsenic (As)-Dissolved (mg/L)	0.0230	0.0104	0.00763	0.00012	0.00238
	Barium (Ba)-Dissolved (mg/L)	0.0647	0.0901	0.0345	0.0573	0.0806
	Beryllium (Be)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)-Dissolved (mg/L)	0.028	0.015	0.078	0.021	<0.010
	Cadmium (Cd)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	0.000195	<0.000010
	Calcium (Ca)-Dissolved (mg/L)	98.3	97.0	20.7	87.8	57.9
	Cesium (Cs)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Chromium (Cr)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)-Dissolved (mg/L)	0.00300	0.00137	0.00022	<0.00010	0.00013
	Copper (Cu)-Dissolved (mg/L)	0.00056	0.00056	0.00059	0.00129	0.00032
	Iron (Fe)-Dissolved (mg/L)	1.27	0.452	<0.010	<0.010	0.222

L1846629 CONTD.... PAGE 3 of 7 28-OCT-16 14:49 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1846629-6 WATER 20-OCT-16 14:45 23089161020006- MW3S	L1846629-7 WATER 20-OCT-16 16:45 23089161020007- MW4S	L1846629-8 WATER 20-OCT-16 16:55 23089161020008- MW4D	
Grouping	Analyte				
WATER					
Physical Tests	Conductivity (umhos/cm)	680	568	484	
	pH (pH units)	7.38	7.66	7.76	
	Total Dissolved Solids (mg/L)	DLDS 385	DLDS 323	DLDS 278	
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	317	227	239	
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<10	<10	<10	
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<10	<10	<10	
	Alkalinity, Total (as CaCO3) (mg/L)	317	227	239	
	Chloride (Cl) (mg/L)	28.6	26.8	9.95	
	Computed Conductivity (uS/cm)	595	513	430	
	Conductivity % Difference (%)	-13.4	-10.2	-11.8	
	Hardness (as CaCO3) (mg/L)	316	237	214	
	Ion Balance (%)	106	102	103	
	Langelier Index	0.3	0.3	0.3	
	Nitrate (as N) (mg/L)	1.65	<0.020	<0.020	
	Nitrite (as N) (mg/L)	<0.010	0.028	<0.010	
	Total Kjeldahl Nitrogen (mg/L)	<1.5	5.0	0.18	
	Saturation pH (pH)	7.04	7.35	7.42	
	TDS (Calculated) (mg/L)	370	312	263	
	Sulfate (SO4) (mg/L)	20.4	48.8	25.7	
	Anion Sum (me/L)	6.56	5.51	4.76	
	Cation Sum (me/L)	6.96	5.62	4.91	
	Cation - Anion Balance (%)	3.0	1.0	1.6	
Dissolved Metals	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	
	Aluminum (AI)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	
	Antimony (Sb)-Dissolved (mg/L)	<0.00010	0.00040	<0.00010	
	Arsenic (As)-Dissolved (mg/L)	0.00019	0.00030	0.00812	
	Barium (Ba)-Dissolved (mg/L)	0.0832	0.0793	0.0637	
	Beryllium (Be)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	
	Boron (B)-Dissolved (mg/L)	0.011	0.018	0.015	
	Cadmium (Cd)-Dissolved (mg/L)	0.000064	<0.000010	<0.000010	
	Calcium (Ca)-Dissolved (mg/L)	80.5	53.2	41.9	
	Cesium (Cs)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	
	Chromium (Cr)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	
	Cobalt (Co)-Dissolved (mg/L)	<0.00010	0.00023	<0.00010	
	Copper (Cu)-Dissolved (mg/L)	0.00081	0.00037	0.00033	
	Iron (Fe)-Dissolved (mg/L)	<0.010	< 0.010	0.288	

L1846629 CONTD.... PAGE 4 of 7 28-OCT-16 14:49 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1846629-1 WATER 20-OCT-16 11:30 23089161020001- MW25	L1846629-2 WATER 20-OCT-16 11:40 23089161020002- MW2D	L1846629-3 WATER 20-OCT-16 12:05 23089161020003- MW1D	L1846629-4 WATER 20-OCT-16 12:15 23089161020004- MW1S	L1846629-5 WATER 20-OCT-16 14:30 23089161020005- MW3D
Grouping	Analyte					
WATER						
Dissolved Metals	Lead (Pb)-Dissolved (mg/L)	0.000266	0.000163	<0.000050	0.000180	<0.000050
	Lithium (Li)-Dissolved (mg/L)	0.0014	0.0017	0.0016	0.0016	0.0023
	Magnesium (Mg)-Dissolved (mg/L)	25.1	26.7	19.3	29.0	25.4
	Manganese (Mn)-Dissolved (mg/L)	0.459	0.157	0.0157	0.00157	0.0174
	Molybdenum (Mo)-Dissolved (mg/L)	0.00192	0.00136	0.00453	0.000284	0.000905
	Nickel (Ni)-Dissolved (mg/L)	0.0126	0.00619	0.00152	0.00082	<0.00050
	Phosphorus (P)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Potassium (K)-Dissolved (mg/L)	0.868	1.01	0.798	1.65	0.986
	Rubidium (Rb)-Dissolved (mg/L)	0.00182	0.00129	0.00082	0.00260	0.00056
	Selenium (Se)-Dissolved (mg/L)	0.000151	<0.000050	<0.000050	0.000229	<0.000050
	Silicon (Si)-Dissolved (mg/L)	3.84	5.60	4.60	4.00	6.41
	Silver (Ag)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Sodium (Na)-Dissolved (mg/L)	32.8	8.90	33.7	49.0	4.38
	Strontium (Sr)-Dissolved (mg/L)	0.144	0.142	0.314	0.326	0.109
	Sulfur (S)-Dissolved (mg/L)	6.40	11.2	7.99	16.5	8.95
	Tellurium (Te)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Thallium (TI)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	0.000021	<0.000010
	Thorium (Th)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Tin (Sn)-Dissolved (mg/L)	<0.00010	<0.00010	0.00014	<0.00010	0.00012
	Titanium (Ti)-Dissolved (mg/L)	<0.00040	<0.00030	<0.00030	<0.00030	<0.00030
	Tungsten (W)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Uranium (U)-Dissolved (mg/L)	0.00961	0.00489	0.00232	0.000809	0.00149
	Vanadium (V)-Dissolved (mg/L)	0.00128	<0.00050	0.00100	<0.00050	<0.00050
	Zinc (Zn)-Dissolved (mg/L)	0.183	0.0404	0.0042	0.111	0.0053
	Zirconium (Zr)-Dissolved (mg/L)	0.00053	<0.00030	<0.00030	<0.00030	<0.00030

	Sample ID Description Sampled Date Sampled Time Client ID	L1846629-6 WATER 20-OCT-16 14:45 23089161020006- MW3S	L1846629-7 WATER 20-OCT-16 16:45 23089161020007- MW4S	L1846629-8 WATER 20-OCT-16 16:55 23089161020008- MW4D	
Grouping	Analyte				
WATER					
Dissolved Metals	Lead (Pb)-Dissolved (mg/L)	0.000158	<0.000050	<0.000050	
	Lithium (Li)-Dissolved (mg/L)	<0.0010	<0.0010	0.0029	
	Magnesium (Mg)-Dissolved (mg/L)	28.0	25.4	26.6	
	Manganese (Mn)-Dissolved (mg/L)	0.0130	0.0575	0.0135	
	Molybdenum (Mo)-Dissolved (mg/L)	0.000447	0.00660	0.00315	
	Nickel (Ni)-Dissolved (mg/L)	0.00083	0.00647	<0.00050	
	Phosphorus (P)-Dissolved (mg/L)	<0.050	<0.050	<0.050	
	Potassium (K)-Dissolved (mg/L)	1.62	2.80	1.48	
	Rubidium (Rb)-Dissolved (mg/L)	0.00205	0.00208	0.00062	
	Selenium (Se)-Dissolved (mg/L)	0.000258	0.000206	<0.000050	
	Silicon (Si)-Dissolved (mg/L)	5.02	5.85	8.69	
	Silver (Ag)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	
	Sodium (Na)-Dissolved (mg/L)	13.7	18.5	13.5	
	Strontium (Sr)-Dissolved (mg/L)	0.110	0.256	0.158	
	Sulfur (S)-Dissolved (mg/L)	6.67	15.5	8.32	
	Tellurium (Te)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	
	Thallium (TI)-Dissolved (mg/L)	0.000024	0.000014	<0.000010	
	Thorium (Th)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	
	Tin (Sn)-Dissolved (mg/L)	<0.00010	0.00070	0.00013	
	Titanium (Ti)-Dissolved (mg/L)	<0.00030	<0.00030	<0.00030	
	Tungsten (W)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	
	Uranium (U)-Dissolved (mg/L)	0.00102	0.00248	0.00112	
	Vanadium (V)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	
	Zinc (Zn)-Dissolved (mg/L)	0.0648	0.0039	0.0272	
	Zirconium (Zr)-Dissolved (mg/L)	<0.00030	<0.00030	<0.00030	

Reference Information

QC Samples with Qualifiers & Comments:

MET-D-CCMS-WT

ac Samples wit	in Quanner	s a comme	11.5.					
QC Type Descri	ption		Parameter	Qualifier	Applies to Sample Number(s)			
Matrix Spike			Barium (Ba)-Dissolved	MS-B	L1846629-1, -2, -3, -4, -5, -6, -7, -8			
Matrix Spike			Calcium (Ca)-Dissolved	MS-B	L1846629-1, -2, -3, -4, -5, -6, -7, -8			
Matrix Spike			Iron (Fe)-Dissolved	MS-B	L1846629-1, -2, -3, -4, -5, -6, -7, -8			
Matrix Spike			Magnesium (Mg)-Dissolved	MS-B	L1846629-1, -2, -3, -4, -5, -6, -7, -8			
Matrix Spike			Manganese (Mn)-Dissolved	MS-B	L1846629-1, -2, -3, -4, -5, -6, -7, -8			
Matrix Spike			Silicon (Si)-Dissolved	MS-B	L1846629-1, -2, -3, -4, -5, -6, -7, -8			
Matrix Spike			Sodium (Na)-Dissolved	MS-B	L1846629-1, -2, -3, -4, -5, -6, -7, -8			
Matrix Spike	xe Strontium (Sr)-Dissolved M				L1846629-1, -2, -3, -4, -5, -6, -7, -8			
Matrix Spike	pike Sulfur (S)-Dissolved M				L1846629-1, -2, -3, -4, -5, -6, -7, -8			
Matrix Spike			Uranium (U)-Dissolved	MS-B	L1846629-1, -2, -3, -4, -5, -6, -7, -8			
Qualifiers for I	ndividual F	Parameters	Listed:					
Qualifier	Description							
DLDS	Detection	Limit Raised	: Dilution required due to high Dissol	ved Solids / Electr	rical Conductivity.			
DLM	Detection	Limit Adjust	ed due to sample matrix effects (e.g.	chemical interfere	ence, colour, turbidity).			
DLUI	Detection	Limit Raised	: Unknown Interference generated ar	n apparent false p	ositive test result.			
MS-B	Matrix Spi	ke recovery	could not be accurately calculated du	e to high analyte	background in sample.			
est Method Re	eferences	:						
ALS Test Code		Matrix	Test Description		Method Reference**			
ALK-SPEC-WT		Water	Speciated Alkalinity		EPA 310.2			
CL-IC-WT		Water	Chloride by IC		EPA 300.1 (mod)			
Inorganic anion	s are analyz	zed by Ion C	hromatography with conductivity and/	or UV detection.				
Analysis conduc Environmental F	cted in acco Protection A	ordance with Act (July 1, 2	the Protocol for Analytical Methods U 011).	sed in the Assess	sment of Properties under Part XV.1 of the			
EC-WT		Water	Conductivity		APHA 2510 B			
Water samples	can be mea	asured direc	tly by immersing the conductivity cell	into the sample.				
IONBALANCE-O	P03-WT	Water	Detailed Ion Balance Calculation		APHA 1030E, 2330B, 2510A			

APHA 3030B/6020A (mod)

Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS.

Water

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

Dissolved Metals in Water by CRC ICPMS

NO3-IC-WTWaterNitrate in Water by ICEPA 300.1 (mod)Inorganic anions are analyzer by Ion Zerosphy with conductivity and/or UV detectionAPHA 4500 H-ElectrodePH-ALK-WTWaterpHAPHA 4500 H-ElectrodeWater samples are analyzer by Ion Zerosphy with conductivity and/or UV detectionEPA 300.1 (mod)SO4-IC-N-WTWaterSulfate in Water by ICEPA 300.1 (mod)Inorganic anions are analyzer by Ion Zerosphy with conductivity and/or UV detectionEPA 300.1 (mod)SoLIDS-TDS-WTWaterTotal Dissolved SolidsAPHA 2540CA well-mixed sample is filter by though by Ion C for 1hr.WaterTotal Dissolved SolidsAPHA 2540CTKN-WTWaterTotal Kjeldahl NitrogenAPHA 4500-N	NO2-IC-WT Inorganic anions are analyz	Water zed by Ion Ch	Nitrite in Water by IC romatography with conductivity and/or UV detection.	EPA 300.1 (mod)
PH-ALK-WT Water pH APHA 4500 H-Electrode Water samples are analyzed directly by alloted pH meter. SO4-IC-N-WT Water Sulfate in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by lon U-matography with conductivity and/or UV detection. Total Dissolved Solids APHA 2540C SOLIDS-TDS-WT Water Total Dissolved Solids APHA 2540C A well-mixed sample is silvers bibres filter. A known volume of the filtrate is evaluated at 105–5 C overnight and then 180–10 C for 1hr. Mater Total Kjeldahl Nitrogen	NO3-IC-WT Inorganic anions are analyz	Water zed by Ion Ch	Nitrate in Water by IC romatography with conductivity and/or UV detection.	EPA 300.1 (mod)
SO4-IC-N-WTWaterSulfate in Water by ICEPA 300.1 (mod)Inorganic anions are analyzed by IO	PH-ALK-WT Water samples are analyze	Water ed directly by	pH a calibrated pH meter.	APHA 4500 H-Electrode
SOLIDS-TDS-WTWaterTotal Dissolved SolidsAPHA 2540CA well-mixed sample is filter- though glass fibres filter. A known volume of the filtrate is evaporated and dried at 105–5 C overnight and then 180–10 C for 1hr.TKN-WTWaterTotal Kjeldahl NitrogenAPHA 4500-N	SO4-IC-N-WT Inorganic anions are analyz	Water zed by Ion Ch	Sulfate in Water by IC romatography with conductivity and/or UV detection.	EPA 300.1 (mod)
TKN-WT Water Total Kjeldahl Nitrogen APHA 4500-N	SOLIDS-TDS-WT A well-mixed sample is filte 180–10 C for 1hr.	Water red though gl	Total Dissolved Solids ass fibres filter. A known volume of the filtrate is evapo	APHA 2540C prated and dried at 105–5 C overnight and then
	TKN-WT	Water	Total Kjeldahl Nitrogen	APHA 4500-N

Sample is digested to convert the TKN to ammonium sulphate. The ammonia ions are heated to produce a colour complex. The absorbance measured by the instrument is proportional to the concentration of ammonium sulphate in the sample and is reported as TKN.

Reference Information

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

WΤ

ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorder:	L1846629)	Repo	ort Date: 28-OC	T-16	Page	e 1 of 6
Client: Contact:	MATRIX SOLUTIONS INC 31 Beacon Point Court Breslau ON N0B 1M0 Scott Miller	2.							
Test	Matrix	Reference	Result	Qualifier	l	Units	RPD	Limit	Analyzed
ALK-SPEC-WT	Water								
Batch R WG2416369-3 Alkalinity, Tota	3577280 CRM al (as CaCO3)	WT-ALK-CRM	98.9			%		80-120	21-OCT-16
WG2416369-4 Alkalinity, Tota	DUP al (as CaCO3)	L1846629-1 375	373			mg/L	0.5	20	21-OCT-16
WG2416369-2 Alkalinity, Tota	LCS al (as CaCO3)		100.2			%		85-115	21-OCT-16
WG2416369-1 Alkalinity, Tota	MB al (as CaCO3)		<10			mg/L		10	21-OCT-16
CL-IC-WT	Water								
Batch R WG2418167-9 Chloride (Cl)	3580587 DUP	L1846629-2 18.4	18.4			mg/L	0.2	25	25-OCT-16
WG2418167-7 Chloride (Cl)	LCS		100.9			%		70-130	25-OCT-16
WG2418167-6 Chloride (Cl)	MB		<0.50			mg/L		0.5	25-OCT-16
WG2418167-1 Chloride (CI)	0 MS	L1846629-2	101.4			%		70-130	25-OCT-16
EC-WT	Water								
Batch R	3577079								
WG2416125-8 Conductivity	DUP	L1846629-1 862	866			umhos/cm	0.1	10	22-OCT-16
WG2416125-2 Conductivity	LCS		99.5			%		90-110	22-OCT-16
WG2416125-6 Conductivity	LCS		100.0			%		90-110	22-OCT-16
WG2416125-1 Conductivity	MB		<3.0			umhos/cm		3	22-OCT-16
WG2416125-5 Conductivity	MB		<3.0			umhos/cm		3	22-OCT-16
Batch R	3582038								
WG2420644-4 Conductivity	DUP	L1846629-3 411	416			umhos/cm	0.0	10	28-OCT-16
WG2420644-2 Conductivity	LCS		99.9			%		90-110	28-OCT-16
WG2420644-1 Conductivity	MB		<3.0			umhos/cm		3	28-OCT-16
MET-D-CCMS-W	r Water								

		Workorder	Workorder: L1846629			Report Date: 28-OCT-16		Page 2 of 6	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-D-CCMS-WT	Water								
Batch R3578	3737								
WG2416020-2 L(CS		04.0		0/				
Auminum (AI)-Diss	solved		91.6		%		80-120	21-OCT-16	
Antimony (Sb)-Diss			100.8		%		80-120	21-OCT-16	
Arsenic (As)-Dissol	ved		93.6		%		80-120	21-OCT-16	
Barium (Ba)-Dissol	ved		93.9		%		80-120	21-OCT-16	
Beryllium (Be)-Diss	olved		85.4		%		80-120	21-OCT-16	
Bismuth (Bi)-Dissol	ved		98.1		%		80-120	21-OCT-16	
Boron (B)-Dissolve	d		88.0		%		80-120	21-OCT-16	
Cadmium (Cd)-Diss	solved		95.5		%		80-120	21-OCT-16	
Calcium (Ca)-Disso	blved		89.8		%		80-120	21-OCT-16	
Cesium (Cs)-Disso	lved		97.0		%		80-120	21-OCT-16	
Chromium (Cr)-Dis	solved		93.0		%		80-120	21-OCT-16	
Cobalt (Co)-Dissolv	ved		93.4		%		80-120	21-OCT-16	
Copper (Cu)-Dissol	lved		95.1		%		80-120	21-OCT-16	
Iron (Fe)-Dissolved			93.7		%		80-120	21-OCT-16	
Lead (Pb)-Dissolve	d		97.0		%		80-120	21-OCT-16	
Lithium (Li)-Dissolv	red		85.6		%		80-120	21-OCT-16	
Magnesium (Mg)-D	issolved		93.1		%		80-120	21-OCT-16	
Manganese (Mn)-D	lissolved		92.8		%		80-120	21-OCT-16	
Molybdenum (Mo)-I	Dissolved		92.4		%		80-120	21-OCT-16	
Nickel (Ni)-Dissolve	ed		94.4		%		80-120	21-OCT-16	
Phosphorus (P)-Dis	ssolved		96.3		%		80-120	21-OCT-16	
Potassium (K)-Diss	olved		93.3		%		80-120	21-OCT-16	
Rubidium (Rb)-Diss	solved		93.1		%		80-120	21-OCT-16	
Selenium (Se)-Diss	solved		96.8		%		80-120	21-OCT-16	
Silicon (Si)-Dissolve	ed		97.2		%		80-120	21-OCT-16	
Silver (Ag)-Dissolve	ed		93.1		%		80-120	21-OCT-16	
Sodium (Na)-Disso	lved		93.3		%		80-120	21-OCT-16	
Strontium (Sr)-Diss	olved		96.6		%		80-120	21-OCT-16	
Sulfur (S)-Dissolved	d		91.4		%		80-120	21-OCT-16	
Tellurium (Te)-Diss	olved		92.1		%		80-120	21-OCT-16	
Thallium (TI)-Dissol	lved		95.0		%		80-120	21-OCT-16	
Thorium (Th)-Disso	blved		94.2		%		80-120	21-OCT-16	
Tin (Sn)-Dissolved			95.4		%		80-120	21-OCT-16	
Titanium (Ti)-Disso	lved		88.9		%		80-120	21-OCT-16	

		Workorder	Workorder: L1846629			Report Date: 28-OCT-16		Page 3 of 6	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-D-CCMS-WT	Water								
Batch R35787	737								
WG2416020-2 LC	S				<i></i>				
I ungsten (VV)-Disso	lived		96.0		%		80-120	21-OCT-16	
Uranium (U)-Dissolv	ved		100.5		%		80-120	21-OCT-16	
Vanadium (V)-Disso	lved		94.2		%		80-120	21-OCT-16	
Zinc (Zn)-Dissolved			91.6		%		80-120	21-OCT-16	
Zirconium (Zr)-Disso	blved		88.4		%		80-120	21-OCT-16	
WG2416020-1 ME	3								
	Dived		< 0.0050		mg/L		0.005	21-OCT-16	
Antimony (Sb)-Disso	olved		<0.00010		mg/L		0.0001	21-OCT-16	
Arsenic (As)-Dissolv	/ed		<0.00010		mg/L		0.0001	21-OCT-16	
Barium (Ba)-Dissolv	ed		<0.00010		mg/L		0.0001	21-OCT-16	
Beryllium (Be)-Disso	blved		<0.00010)	mg/L		0.0001	21-OCT-16	
Bismuth (Bi)-Dissolv	ved		<0.00005	0	mg/L		0.00005	21-OCT-16	
Boron (B)-Dissolved			<0.010		mg/L		0.01	21-OCT-16	
Cadmium (Cd)-Diss	olved		<0.00001	0	mg/L		0.00001	21-OCT-16	
Calcium (Ca)-Dissol	ved		<0.050		mg/L		0.05	21-OCT-16	
Cesium (Cs)-Dissolv	ved		<0.00001	0	mg/L		0.00001	21-OCT-16	
Chromium (Cr)-Diss	olved		<0.00050		mg/L		0.0005	21-OCT-16	
Cobalt (Co)-Dissolve	ed		<0.00010		mg/L		0.0001	21-OCT-16	
Copper (Cu)-Dissolv	ved		<0.00020)	mg/L		0.0002	21-OCT-16	
Iron (Fe)-Dissolved			<0.010		mg/L		0.01	21-OCT-16	
Lead (Pb)-Dissolved	ł		<0.00005	i0	mg/L		0.00005	21-OCT-16	
Lithium (Li)-Dissolve	ed		<0.0010		mg/L		0.001	21-OCT-16	
Magnesium (Mg)-Di	ssolved		<0.050		mg/L		0.05	21-OCT-16	
Manganese (Mn)-Di	ssolved		<0.00050)	mg/L		0.0005	21-OCT-16	
Molybdenum (Mo)-D	Dissolved		<0.00005	0	mg/L		0.00005	21-OCT-16	
Nickel (Ni)-Dissolved	d		<0.00050)	mg/L		0.0005	21-OCT-16	
Phosphorus (P)-Diss	solved		<0.050		mg/L		0.05	21-OCT-16	
Potassium (K)-Disso	olved		<0.050		mg/L		0.05	21-OCT-16	
Rubidium (Rb)-Disse	olved		<0.00020)	mg/L		0.0002	21-OCT-16	
Selenium (Se)-Disso	olved		<0.00005	0	mg/L		0.00005	21-OCT-16	
Silicon (Si)-Dissolve	d		<0.050		mg/L		0.05	21-OCT-16	
Silver (Ag)-Dissolve	d		<0.00005	0	mg/L		0.00005	21-OCT-16	
Sodium (Na)-Dissolv	ved		<0.50		mg/L		0.5	21-OCT-16	
Strontium (Sr)-Disso	blved		<0.0010		mg/L		0.001	21-OCT-16	

		Workorder:	Workorder: L1846629		Report Date: 28-OCT-16		Page 4 of 6	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-WT	Water							
Batch R3578737								
WG2416020-1 MB Sulfur (S)-Dissolved			<0.50		ma/l		0.5	21 OCT 16
	d		<0.00		mg/L		0.0	21-0CT-10
Thallium (TI)-Dissolved	u		<0.00020	1	mg/L		0.0002	21-OCT-10
Thorium (Th)-Dissolved	I		<0.000010		mg/L		0.00001	21-0CT-16
Tin (Sn)-Dissolved			<0.00010		mg/L		0.0001	21-0CT-16
Titanium (Ti)-Dissolved			< 0.00030		ma/L		0.0003	21-00T-16
Tungsten (W)-Dissolve	d		<0.00010		ma/L		0.0001	21-00T-16
Uranium (U)-Dissolved			<0.000010)	ma/L		0.00001	21-0CT-16
Vanadium (V)-Dissolve	d		< 0.00050		mg/L		0.0005	21-OCT-16
Zinc (Zn)-Dissolved			<0.0010		mg/L		0.001	21-OCT-16
Zirconium (Zr)-Dissolve	d		<0.00030		mg/L		0.0003	21-OCT-16
NO2-IC-WT	Water				-			
Batch R3580587								
WG2418167-9 DUP		L1846629-2						
Nitrite (as N)		<0.010	<0.010	RPD-N	A mg/L	N/A	25	25-OCT-16
WG2418167-7 LCS Nitrite (as N)			104.0		%		70-130	25-OCT-16
WG2418167-6 MB Nitrite (as N)			<0.010		mg/L		0.01	25-OCT-16
WG2418167-10 MS Nitrite (as N)		L1846629-2	101.0		%		70-130	25-OCT-16
NO3-IC-WT	Water							
Batch R3580587								
WG2418167-9 DUP Nitrate (as N)		L1846629-2 <0.020	<0.020	RPD-N	A mg/L	N/A	25	25-OCT-16
WG2418167-7 LCS Nitrate (as N)			99.9		%		70-130	25-OCT-16
WG2418167-6 MB Nitrate (as N)			<0.020		mg/L		0.02	25-OCT-16
WG2418167-10 MS Nitrate (as N)		L1846629-2	100.1		%		70-130	25-OCT-16
PH-ALK-WT	Water							
Batch R3576742								
WG2415568-10 LCS рН			6.99		pH units		6.9-7.1	21-OCT-16

		Workorder:	L184662	9	Report Date: 28	3-OCT-16	Pa	ge 5 of 6
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SO4-IC-N-WT	Water							
Batch R3580587	,							
WG2418167-9 DUP		L1846629-2	34.0		ma/l	0.1	20	25 OOT 40
		54.9	54.9		IIIg/L	0.1	20	25-001-16
Sulfate (SO4)			100.8		%		90-110	25-OCT-16
WG2418167-6 MB								
Sulfate (SO4)			<0.30		mg/L		0.3	25-OCT-16
WG2418167-10 MS		L1846629-2						
Sulfate (SO4)			98.3		%		75-125	25-OCT-16
SOLIDS-TDS-WT	Water							
Batch R3580302	2							
WG2418394-2 LCS			o- /		<u>0</u> (
I otal Dissolved Solids			95.4		%		85-115	25-OCT-16
WG2418394-1 MB Total Dissolved Solids			<10		ma/l		10	25-OCT-16
	Wator				ing/ L		10	23-001-10
	Water							
WG2417137-3 DUP)	I 1846629-2						
Total Kjeldahl Nitrogen		0.44	0.39		mg/L	10	20	25-OCT-16
WG2417133-2 LCS								
Total Kjeldahl Nitrogen			93.5		%		75-125	25-OCT-16
WG2417137-2 LCS								
Total Kjeldahl Nitrogen			97.8		%		75-125	25-OCT-16
WG2417133-1 MB			<0.15		ma/l		0.15	05 OOT 40
			~0.15		IIIg/L		0.15	25-001-16
Total Kjeldahl Nitrogen			<0.15		mg/L		0.15	25-OCT-16
WG2417137-4 MS		L1846629-2			Ū			
Total Kjeldahl Nitrogen			112.8		%		70-130	25-OCT-16
Batch R3580613	;							
WG2417995-2 LCS								
Total Kjeldahl Nitrogen			112.2		%		75-125	26-OCT-16
WG2417995-1 MB			-0.45				0.45	
i otai kjeldani Nitrogen			<0.15		mg/L		0.15	26-OCT-16

Workorder: L1846629

Report Date: 28-OCT-16

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

C	Matrix So	Utions II & engineer	ING		сос#м 818	38		Lab Su Lab Ag	bmitted	to:	ALS	Nate	Pi Sloo	age: 1		1	
	Invoice to:	Require Report:Y		Copy of	Report to:			Lab Jo	b ID:								
Company Name: MATRIX SOLUTIANS				Matrix So	lutions - Data Managemer	nt											
Contact Na	ame: Scett	Miller		Suite 200	, 150 - 13th Avenue SW			Matrix F	Project # :	_23	<u>089.</u>	- 52	8				
Address:	31 Ber	ion pt court		Calgary,	Alberta, Canada			Matrix Proj. Name: Claire-Maltby									
			PC: -	T2R 0V2				Locatio	n:					0.			
Phone / Fa	x#:Ph:		Fax:	Ph: 403-2	37-0606	Fax: 403-263-2493	<u>}</u>	Sample	r's Name <u>(</u>	s): 5	. Mi	wer					
AFE #:	149006.02.	03		Fax draft	copy of invoice to Matrix S	Solutions Inc.				An	alysis R	equired	1				
REGULAT	ORY REQUIREMENTS: (check)		SERVICE REC	QUESTED:									•				SL.
Alber	rta Tier 1		RUSH (Ple	ease ensure you cont	act the lab) Due Date:												qu
SPIG	GEC	tolo)		Turnaround	and to data management	Amatrix colutions as	_ Iv										Jur
Cana	nwater Aquatic Lite (Low Level Me adian Drinking Water	stals)	Additional	5mille	Compate 'x - c		. 0	- I									e
BC R	Reas		Emails			5/0110.00	ΜŬ										ldu
Othe	ir:						4	D IQ									Sar
	Sample Number (14 digits only) vr-mth-day	Sample Point Name	Depth (cm)	Sample Type	Date/Time Sampled	Quantity # of	ĘČ	8									-ab \$
12	3089161020001	MW25		Water	001 20 11:30	3 -	<u> </u>	Z							+	+	 }
2	1 000	2 MW2D	~	1	1 11140	3 -	×	<									2
3	003	MWID	~		12:05	3 -	×		-	,							3
4	001	+ MW15	_		12:15	3 ~		<									ч
5	00	5 MW30	-		14:30	3 ~	×										5
6	00	6 MW35	1		14:45	3 (> >	5			I				1		ç
7	V 00.	7 MWHS	-	V	V 16:45	3 (- >	<				1144111					Э-
8 23	308916102000	3 MWYD	-	Wates	oct 20 16:55	3 -	- X								l .	_	õ
9						BUT	10	2		L1	84662	29-CO	FC				
10										+ +		- I i					
11																	
12		-															
13																	
14											•						
15																	
*For metals	s in water samples indicate if yo	u want Total (T), Dissolve	d (D) or Extractable	e (E) as part of "Ana	lysis Required″	Preserved/Filte	ered						\nearrow		\square		
Relinquish	red by: 5 cott	Miller	Date/Time:	Oct and b	18:30	Received by:		51	5.2	>	Date	/Time:	0	sta	116	\sim	
Signature:			ALL	Sent .	IN An	Signature:	4 <u>xn</u> 102	una Sa	9 - 1	29	9		,	er	0.0		
COWMENT	SISPECIAL INSTRUCTIONS	C	Motor	N INC	Field Filt	and i	300	20	505	595	<u> </u>						-
				when					/0/	,						1	t

.

MATRIX SOLUTIONS INC. ATTN: Scott Miller 31 Beacon Point Court Breslau ON NOB 1M0 Date Received: 21-OCT-16 Report Date: 01-NOV-16 08:17 (MT) Version: FINAL

Client Phone: 519-772-3777

Certificate of Analysis

Lab Work Order #: L1847231 Project P.O. #: CLAIRE-MALTBY Job Reference: 23089-528 C of C Numbers: 81839 Legal Site Desc:

Gayle Braun Senior Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 309 Exeter Road Unit #29, London, ON N6L 1C1 Canada | Phone: +1 519 652 6044 | Fax: +1 519 652 0671 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1847231 CONTD.... PAGE 2 of 5 01-NOV-16 08:17 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1847231-1 WATER 21-OCT-16 11:30 23089161021001 MW9D	L1847231-2 WATER 21-OCT-16 11:45 23089161021002 MW95		
Grouping	Analyte				
WATER					
Physical Tests	Conductivity (umhos/cm)	445	583		
	pH (pH units)	7.56	7.28		
	Total Dissolved Solids (mg/L)	DLDS 272	DLDS 346		
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	237	260		
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<10	<10		
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<10	<10		
	Alkalinity, Total (as CaCO3) (mg/L)	237	260		
	Chloride (Cl) (mg/L)	2.79	14.1		
	Computed Conductivity (uS/cm)	404	547		
	Conductivity % Difference (%)	-9.6	-6.4		
	Hardness (as CaCO3) (mg/L)	228	319		
	Ion Balance (%)	123	121		
	Langelier Index	0.3	0.2		
	Nitrate (as N) (mg/L)	<0.020	7.00		
	Nitrite (as N) (mg/L)	<0.010	<0.010		
	Total Kjeldahl Nitrogen (mg/L)	0.48	1.91		
	Saturation pH (pH)	7.30	7.08		
	TDS (Calculated) (mg/L)	243	339		
	Sulfate (SO4) (mg/L)	7.88	16.9		
	Anion Sum (me/L)	4.15	5.51		
	Cation Sum (me/L)	5.11	6.67		
	Cation - Anion Balance (%)	10.4	9.5		
Dissolved Metals	Dissolved Metals Filtration Location	FIELD	FIELD		
	Aluminum (AI)-Dissolved (mg/L)	<0.0050	<0.0050		
	Antimony (Sb)-Dissolved (mg/L)	0.00013	<0.00010		
	Arsenic (As)-Dissolved (mg/L)	0.00390	0.00012		
	Barium (Ba)-Dissolved (mg/L)	0.0908	0.0869		
	Beryllium (Be)-Dissolved (mg/L)	<0.00010	<0.00010		
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050	<0.000050		
	Boron (B)-Dissolved (mg/L)	0.017	0.012		
	Cadmium (Cd)-Dissolved (mg/L)	0.000019	0.000036		
	Calcium (Ca)-Dissolved (mg/L)	54.4	89.3		
	Cesium (Cs)-Dissolved (mg/L)	<0.000010	<0.000010		
	Chromium (Cr)-Dissolved (mg/L)	<0.00050	<0.00050		
	Cobalt (Co)-Dissolved (mg/L)	0.00023	<0.00010		
	Copper (Cu)-Dissolved (mg/L)	0.00054	0.00112		
	Iron (Fe)-Dissolved (ma/L)	0.024	<0.010		

L1847231 CONTD.... PAGE 3 of 5 01-NOV-16 08:17 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1847231-1 WATER 21-OCT-16 11:30 23089161021001 MW9D	L1847231-2 WATER 21-OCT-16 11:45 23089161021002 MW95		
Grouping	Analyte				
WATER					
Dissolved Metals	Lead (Pb)-Dissolved (mg/L)	0.000113	0.000060		
	Lithium (Li)-Dissolved (mg/L)	0.0027	<0.0010		
	Magnesium (Mg)-Dissolved (mg/L)	22.3	23.4		
	Manganese (Mn)-Dissolved (mg/L)	0.0367	0.00469		
	Molybdenum (Mo)-Dissolved (mg/L)	0.00634	0.000203		
	Nickel (Ni)-Dissolved (mg/L)	0.00068	<0.00050		
	Phosphorus (P)-Dissolved (mg/L)	<0.050	<0.050		
	Potassium (K)-Dissolved (mg/L)	1.08	3.34		
	Rubidium (Rb)-Dissolved (mg/L)	0.00167	0.00047		
	Selenium (Se)-Dissolved (mg/L)	<0.000050	0.000314		
	Silicon (Si)-Dissolved (mg/L)	7.26	4.43		
	Silver (Ag)-Dissolved (mg/L)	<0.000050	<0.000050		
	Sodium (Na)-Dissolved (mg/L)	12.1	4.69		
	Strontium (Sr)-Dissolved (mg/L)	0.166	0.0948		
	Sulfur (S)-Dissolved (mg/L)	2.24	5.60		
	Tellurium (Te)-Dissolved (mg/L)	<0.00020	<0.00020		
	Thallium (TI)-Dissolved (mg/L)	0.000020	<0.000010		
	Thorium (Th)-Dissolved (mg/L)	<0.00010	<0.00010		
	Tin (Sn)-Dissolved (mg/L)	0.00027	0.00027		
	Titanium (Ti)-Dissolved (mg/L)	<0.00030	<0.00030		
	Tungsten (W)-Dissolved (mg/L)	<0.00010	<0.00010		
	Uranium (U)-Dissolved (mg/L)	0.00104	0.000262		
	Vanadium (V)-Dissolved (mg/L)	<0.00050	<0.00050		
	Zinc (Zn)-Dissolved (mg/L)	0.0146	0.0604		
	Zirconium (Zr)-Dissolved (mg/L)	<0.00030	<0.00030		

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Description		Parameter	Qualifier	Applies to Sample Number(s)
Matrix Spike		Barium (Ba)-Dissolved	MS-B	L1847231-1, -2
Matrix Spike		Calcium (Ca)-Dissolved	MS-B	L1847231-1, -2
Matrix Spike		Magnesium (Mg)-Dissolved	MS-B	L1847231-1, -2
Matrix Spike		Potassium (K)-Dissolved	MS-B	L1847231-1, -2
Matrix Spike		Silicon (Si)-Dissolved	MS-B	L1847231-1, -2
Matrix Spike		Sodium (Na)-Dissolved	MS-B	L1847231-1, -2
Matrix Spike		Strontium (Sr)-Dissolved	MS-B	L1847231-1, -2
Matrix Spike		Sulfur (S)-Dissolved	MS-B	L1847231-1, -2
Matrix Spike		Uranium (U)-Dissolved	MS-B	L1847231-1, -2
Qualifiers for Individ	ual Parameters	Listed:		
Qualifier Desc	ription			
DLDS Dete	ction Limit Raise	d: Dilution required due to high Dissolv	ed Solids / Electr	ical Conductivity.
MS-B Matri	x Spike recovery	could not be accurately calculated due	e to high analyte	background in sample.
est Method Referer	ices:			
LS Test Code	Matrix	Test Description		Method Reference**
LK-SPEC-WT	Water	Speciated Alkalinity		EPA 310.2
L-IC-WT	Water	Chloride by IC		EPA 300.1 (mod)
Inorganic anions are a	inalyzed by Ion (Chromatography with conductivity and/o	or UV detection.	
Analysis conducted in Environmental Protec	accordance with	n the Protocol for Analytical Methods Us 2011).	sed in the Assess	sment of Properties under Part XV.1 of the
C-WT	Water	Conductivity		APHA 2510 B
Water samples can be	e measured direc	ctly by immersing the conductivity cell i	nto the sample	
IONBALANCE-OP03-WT Water D		Detailed Ion Balance Calculation		APHA 1030E, 2330B, 2510A
MET-D-CCMS-WT Water [Dissolved Metals in Water by CRC	ICPMS	APHA 3030B/6020A (mod)
Water samples are filf	ered (0.45 um)	preserved with nitric acid and analyzed	by CRC ICPMS	
Method Limitation (re:	Sulfur): Sulfide	and volatile sulfur species may not be r	recovered by this	method
	Oundry. Ounder	and volatile suith species may not be i		
Analysis conducted in Environmental Protect	accordance with tion Act (July 1, 2	n the Protocol for Analytical Methods Us 2011).	sed in the Assess	sment of Properties under Part XV.1 of the
IO2-IC-WT	Water	Nitrite in Water by IC		EPA 300.1 (mod)
Inorganic anions are a	inalyzed by Ion (Chromatography with conductivity and/o	or UV detection.	
	Wator	Nitrato in Water by IC		EPA 300 1 (mod)
Inorganic anions are r	walei	Chromatography with conductivity and/	or LIV dotaction	EFA 300.1 (mod)
inorganic amons are a	inalyzed by for t		or ov detection.	
H-ALK-WT	Water	pН		APHA 4500 H-Electrode
Water samples are ar	alyzed directly b	y a calibrated pH meter.		
O4-IC-N-WT	Water	Sulfate in Water by IC		EPA 300.1 (mod)
Inorganic anions are a	inalyzed by Ion (Chromatography with conductivity and/o	or UV detection.	
OLIDS-TDS-WT	Water	Total Dissolved Solids		APHA 2540C
A well-mixed sample i 180–10 C for 1hr.	s filtered though	glass fibres filter. A known volume of t	the filtrate is evap	porated and dried at 105–5 C overnight and then
KN-WT	Water	Total Kjeldahl Nitrogen		APHA 4500-N
	convert the TKN	I to ammonium sulphate. The ammonia	ions are heated	to produce a colour complex. The absorbance
measured by the instr	ument is proport	ional to the concentration of ammoniun	n sulphate in the	sample and is reported as TKN.
Sample is digested to measured by the instr ALS test methods may	ument is proport	ional to the concentration of ammoniun difications from specified reference me	n sulphate in the	sample and is reported as TKN.

Reference Information

WΤ

ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

81839

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample. mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorder:	L1847231		Report Date: 01-I	NOV-16	Pa	ge 1 of 6
Client:	MATRIX SOLUTIONS INC 31 Beacon Point Court Breslau ON N0B 1M0 Scott Miller							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
	Water							-
ALK-SPEC-WI	walei							
WG2417846-3 Alkalinity, Tot	CRM al (as CaCO3)	WT-ALK-CRM	96.8		%		80-120	24-OCT-16
WG2417846-2 Alkalinity, Tot	2 LCS al (as CaCO3)		104.4		%		85-115	24-OCT-16
WG2417846-1 Alkalinity, Tot	MB al (as CaCO3)		<10		mg/L		10	24-OCT-16
CL-IC-WT	Water							
Batch I	R3581637							
WG2420201-1 Chloride (Cl)	2 LCS		100.5		%		70-130	27-OCT-16
WG2420201-1 Chloride (Cl)	1 MB		<0.50		mg/L		0.5	27-OCT-16
EC-WT	Water							
Batch B WG2416673-2 Conductivity	R3579021 2 LCS		97.8		%		90-110	22-OCT-16
WG2416673-1 Conductivity	МВ		<3.0		umhos/cm		3	22-OCT-16
MET-D-CCMS-W	T Water							
Batch I	R3579149							
WG2417038-2	LCS							
Aluminum (Al)-Dissolved		104.3		%		80-120	25-OCT-16
Antimony (Sb)-Dissolved		98.1		%		80-120	25-OCT-16
Arsenic (As)-i			95.9		%		80-120	25-OCT-16
Banuin (Ba)-L			97.5		70 0/		80-120	25-0CT-16
Bismuth (Bi)-)-Dissolved		08.7		70 9/2		80-120	25-0CT-16
Boron (B)-Dis	solved		100.6		%		00-120 90-120	25-0CT-16
Cadmium (Co	1)-Dissolved		93.1		%		80 120	25-0CT-16
Calcium (Ca)	-Dissolved		99.9		%		80-120	25-0CT-16
Cesium (Cs)-	Dissolved		98.7		%		80_120	25-001-10 25-00T-16
Chromium (C	r)-Dissolved		94.2		%		80-120	25-001-10 25-00T-16
Cobalt (Co)-C	Dissolved		93.6		%		80-120	25-001-10
Copper (Cu)-	Dissolved		91 7		%		80 120	25-001-10
	solved		84 7		%		80 120	25-001-10
ead (Ph)-Dis	solved		95.2		%		80-120	25-001-10
			55.Z		70		00-120	20-001-10

Test Matrix		Workorder	: L184723	31	Report Date: ()1-NOV-16	Page 2 of 6			
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed		
MET-D-CCMS-WT	Water									
Batch R3579	9149									
WG2417038-2 L	CS		100.0		0/					
	ved		106.8		%		80-120	25-OCT-16		
Magnesium (Mg)-L	Dissolved		99.0		%		80-120	25-OCT-16		
Manganese (Mn)-D	Dissolved		96.8		%		80-120	25-OCT-16		
Molybdenum (Mo)-	Dissolved		93.4		%		80-120	25-OCT-16		
Nickel (Ni)-Dissolve	ed		93.1		%		80-120	25-OCT-16		
Phosphorus (P)-Di	ssolved		101.3		%		80-120	25-OCT-16		
Potassium (K)-Diss	solved		95.6		%		80-120	25-OCT-16		
Rubidium (Rb)-Dis	solved		99.8		%		80-120	25-OCT-16		
Selenium (Se)-Diss	solved		87.2		%		80-120	25-OCT-16		
Silicon (Si)-Dissolv	ed		106.1		%		80-120	25-OCT-16		
Silver (Ag)-Dissolve	ed		94.1		%		80-120	25-OCT-16		
Sodium (Na)-Disso	lved		96.8		%		80-120	25-OCT-16		
Strontium (Sr)-Diss	solved		98.7		%		80-120	25-OCT-16		
Sulfur (S)-Dissolve	d		100.4		%		80-120	25-OCT-16		
Tellurium (Te)-Diss	solved		94.0		%		80-120	25-OCT-16		
Thallium (TI)-Disso	lved		96.7		%		80-120	25-OCT-16		
Thorium (Th)-Disso	olved		92.1		%		80-120	25-OCT-16		
Tin (Sn)-Dissolved			95.0		%		80-120	25-OCT-16		
Titanium (Ti)-Disso	lved		94.7		%		80-120	25-OCT-16		
Tungsten (W)-Diss	olved		93.5		%		80-120	25-OCT-16		
Uranium (U)-Disso	lved		93.2		%		80-120	25-OCT-16		
Vanadium (V)-Diss	olved		96.7		%		80-120	25-OCT-16		
Zinc (Zn)-Dissolved	d		89.5		%		80-120	25-OCT-16		
Zirconium (Zr)-Diss	solved		93.7		%		80-120	25-OCT-16		
WG2417038-1 M	IB									
Aluminum (AI)-Diss	solved		<0.0050		mg/L		0.005	25-OCT-16		
Antimony (Sb)-Dise	solved		<0.00010)	mg/L		0.0001	25-OCT-16		
Arsenic (As)-Disso	lved		<0.00010)	mg/L		0.0001	25-OCT-16		
Barium (Ba)-Dissol	ved		<0.00010)	mg/L		0.0001	25-OCT-16		
Beryllium (Be)-Diss	solved		<0.00010)	mg/L		0.0001	25-OCT-16		
Bismuth (Bi)-Disso	lved		<0.00005	50	mg/L		0.00005	25-OCT-16		
Boron (B)-Dissolve	d		<0.010		mg/L		0.01	25-OCT-16		
Cadmium (Cd)-Dis	solved		<0.00002	10	mg/L		0.00001	25-OCT-16		
Calcium (Ca)-Disso	olved		<0.050		mg/L		0.05	25-OCT-16		

	Workorder:	L1847231		Report Date: 0	1-NOV-16	Pa	Page 3 of 6		
Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed		
MET-D-CCMS-WT Water									
Batch R3579149									
WG2417038-1 MB									
Cesium (Cs)-Dissolved		<0.000010)	mg/L		0.00001	25-OCT-16		
Chromium (Cr)-Dissolved		<0.00050		mg/L		0.0005	25-OCT-16		
Cobalt (Co)-Dissolved		<0.00010		mg/L		0.0001	25-OCT-16		
Copper (Cu)-Dissolved		<0.00020		mg/L		0.0002	25-OCT-16		
Iron (Fe)-Dissolved		<0.010		mg/L		0.01	25-OCT-16		
Lead (Pb)-Dissolved		<0.000050)	mg/L		0.00005	25-OCT-16		
Lithium (Li)-Dissolved		<0.0010		mg/L		0.001	25-OCT-16		
Magnesium (Mg)-Dissolved		<0.050		mg/L		0.05	25-OCT-16		
Manganese (Mn)-Dissolved		<0.00050		mg/L		0.0005	25-OCT-16		
Molybdenum (Mo)-Dissolved		<0.000050)	mg/L		0.00005	25-OCT-16		
Nickel (Ni)-Dissolved		<0.00050		mg/L		0.0005	25-OCT-16		
Phosphorus (P)-Dissolved		<0.050		mg/L		0.05	25-OCT-16		
Potassium (K)-Dissolved		<0.050		mg/L		0.05	25-OCT-16		
Rubidium (Rb)-Dissolved		<0.00020		mg/L		0.0002	25-OCT-16		
Selenium (Se)-Dissolved		<0.000050)	mg/L		0.00005	25-OCT-16		
Silicon (Si)-Dissolved		<0.050		mg/L		0.05	25-OCT-16		
Silver (Ag)-Dissolved		<0.000050)	mg/L		0.00005	25-OCT-16		
Sodium (Na)-Dissolved		<0.50		mg/L		0.5	25-OCT-16		
Strontium (Sr)-Dissolved		<0.0010		mg/L		0.001	25-OCT-16		
Sulfur (S)-Dissolved		<0.50		mg/L		0.5	25-OCT-16		
Tellurium (Te)-Dissolved		<0.00020		mg/L		0.0002	25-OCT-16		
Thallium (TI)-Dissolved		<0.000010)	mg/L		0.00001	25-OCT-16		
Thorium (Th)-Dissolved		<0.00010		mg/L		0.0001	25-OCT-16		
Tin (Sn)-Dissolved		<0.00010		mg/L		0.0001	25-OCT-16		
Titanium (Ti)-Dissolved		<0.00030		mg/L		0.0003	25-OCT-16		
Tungsten (W)-Dissolved		<0.00010		mg/L		0.0001	25-OCT-16		
Uranium (U)-Dissolved		<0.000010)	mg/L		0.00001	25-OCT-16		
Vanadium (V)-Dissolved		<0.00050		mg/L		0.0005	25-OCT-16		
Zinc (Zn)-Dissolved		<0.0010		mg/L		0.001	25-OCT-16		

NO2-IC-WT

Water

		Workorder: L1847231			Report Date: 01-	NOV-16	Page 4 of 6		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
NO2-IC-WT	Water								
Batch R358163	7								
WG2420201-12 LCS Nitrite (as N)			102.9		%		70-130	27-OCT-16	
WG2420201-11 MB Nitrite (as N)			<0.010		mg/L		0.01	27-OCT-16	
NO3-IC-WT	Water								
Batch R358163	7								
WG2420201-12 LCS Nitrate (as N)			100.3		%		70-130	27-OCT-16	
WG2420201-11 MB									
Nitrate (as N)			<0.020		mg/L		0.02	27-OCT-16	
PH-ALK-WT	Water								
Batch R357715	7								
WG2416472-9 DUP pH		L1847231-2 7.28	7.32	J	pH units	0.04	0.2	22-OCT-16	
WG2416472-4 LCS									
рН			6.96		pH units		6.9-7.1	22-OCT-16	
WG2416472-7 LCS рН			6.94		pH units		6.9-7.1	22-OCT-16	
SO4-IC-N-WT	Water								
Batch R358163	7								
WG2420201-12 LCS Sulfate (SO4)			100.3		%		90-110	27-OCT-16	
WG2420201-11 MB									
Sulfate (SO4)			<0.30		mg/L		0.3	27-OCT-16	
SOLIDS-TDS-WT	Water								
Batch R358327	8								
WG2419582-3 DUP Total Dissolved Solids		L1847231-1 272	270		mg/L	0.9	20	26-OCT-16	
WG2419582-2 LCS Total Dissolved Solids	;		96.4		%		85-115	26-OCT-16	
WG2419582-1 MB Total Dissolved Solids	:		<10		mg/L		10	26-OCT-16	
TKN-WT	Water								
Batch R358432	1								
WG2418960-2 LCS Total Kjeldahl Nitroge	n		91.0		%		75-125	31-OCT-16	
WG2418960-1 MB									

			Workorder:	L184723	1	Report Date: ()1-NOV-16	Pa	age 5 of 6
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TKN-WT		Water							
Batch	R3584321								
WG2418960-1 MB Total Kjeldahl Nitrogen				<0.15		mg/L		0.15	31-OCT-16

Workorder: L1847231

Report Date: 01-NOV-16

Legend:

ALS Control Limit (Data Quality Objectives)
Duplicate
Relative Percent Difference
Not Available
Laboratory Control Sample
Standard Reference Material
Matrix Spike
Matrix Spike Duplicate
Average Desorption Efficiency
Method Blank
Internal Reference Material
Certified Reference Material
Continuing Calibration Verification
Calibration Verification Standard
Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

	Aatrix Sol	Utions I & engineer	7C. ING		^{coc # M} 81	83	9			Lab Sul		to:	AL	Śω	ates		_ of	_1	
Company Name:	Invoice to:	Require Report:YN_		Copy of Matrix So	Report to: lutions - Data Manag	gement													
Contact Name: Address:	- Si Bear Brestray	on foint ON	Court	Suite 200 Calgary, A	, 150 - 13th Avenue Alberta, Canada	SW			-	Matrix P Matrix P	roject # roj. Nam	23 	aire	5 - M	528 141	~J			
Phone / Fax#:	Ph:		PC: Fax:	T2R 0V2 Ph: 403-2	37-0606		Fax: 403-2	263-2493	-	Location Sampler	n: 's Name	(s): č	5. 1.1	1105		0			
	9006 05	2.03		Fax draft	copy of invoice to M	atrix So	lutions In	C.	- ' 1				Analysis	Requir	ed				
REGULATORY RE Alberta Tier 1 SPIGEC Freshwater A Canadian Dri BC Regs Other:	QUIREMENTS: (check) quatic Life (Low Level Meta nking Water	ils)	SERVICE REQ RUSH (Ple REGULAR REPORT DIST Additional Emails	EVESTED: ase ensure you conta Turnaround RIBUTION; always	act the lab) <u>Due Date:</u> send to data_manage	ment@ Ր՟X	matrix-sol - Solv	utions.com	58595										sample Numper
	ample Number its only) yr-mth-day	Sample Point Name	Depth (cm)	Sample Type	Date/Time Sam	pled	Quant Jars	tity # of Bags	Ø										Lab
1 2308	89161021001	MWQD .		Water	0421 11:	30	3		\times										1
2 2308	1161021002	MW95		Water	Oct 21 11:1	45	3		\times	_	_	_			_		_	6	2
3										+	_			_	+		+		
4										+							+		_
6		•											, , , 	<u> </u>					
9									- 184,	(231-(COFC			_					_
10													<u>↓ </u>	_					
11										_	_						+		
12		· · · · · · · · · · · · · · · · · · ·			<u> </u>					+			-	_	+				
14											-				+				
15												<u> </u>			\top		1		
*For metals in wate	er samples indicate if you	want Total (T), Dissolve	d (D) or Extractable	E) as part of "Ana	lysis Required"		Pres	erved/Filtered		\wedge	\sim	\mathbb{Z}	\square		\square		1	Z,	_
Relinquished by:	toto ~	the Million	Date/Time:	00021	18:15	1	Received t	y: E	<u>YS</u>	_			D	ate/Time:		<u>act</u>	20	2010	
COMMENTS/SPEC			CALL	Scott	With	Que	signature:	<u>s 4</u>	13 501	58	7 1	599			10.0	18	5.20 177	P C	7
		/0	many	are p	3500000	m		001	iey	1		02	<u>a</u> .		#UI	10+	14	$\rightarrow \sim$	

Isotope Analyses for: Matrix Solutions Inc.

IT2 FILE # 160319

2016-12-22

Approved by:

Orfan SStash

Orfan Shouakar-Stash, PhD Director Isotope Tracer Technologies Inc. 695 Rupert St. Unit B, Waterloo, ON, N2V 1Z5 Tel: 519-886-5555 | Fax: 519-886-5575 Email: orfan@it2isotopes.com Website: www.it2isotopes.com

Client: Matrix Solutions Inc 31 Beacon Point Ct Breslau, ON NOB 1M0 Tel: 519-772-3777 Attn.: Jeff Melchin/Scott Miller E-mail: jmelchin@matrix-solutions.com E-mail: smiller@matrix-solutions.com

File Number:	<u>160319</u>
Project Number:	23089-528
Project Name:	Clair-Maltby

#	Sample ID	Sample Name	Collection	Sample #	E ³ H	Result	± 1σ	Repeat	±1σ	
			Date Time							
1	23089161028001	MW5S	October 28, 2016	14:30	40284	Х	10.9	1.0		
2	23089161028002	MW5D	October 28, 2016	14:45	40285	Х	10.1	1.0		
3	23089161028003	MW3S	October 28, 2016	15:45	40286	Х	13.1	1.4		
4	23089161028004	MW7	October 28, 2016	17:00	40287	Х	6.4	1.1	6.8	1.1

Tritium is reported in Tritium Units. 1TU = 3.221 Picocurries/L per IAEA, 2000 Report.

1TU = 0.11919 Becquerels/L per IAEA, 2000 Report.

Approved by:

Orfan SStash

Orfan Shouakar-Stash, PhD Director Isotope Tracer Technologies Inc. 695 Rupert St. Unit B, Waterloo, ON, N2V 1Z5 Tel: 519-886-5555 | Fax: 519-886-5575 Email: orfan@it2isotopes.com Website: www.it2isotopes.com

Appendix B5 Hydraulic Conductivity Test Results

Appendix B-Tables Tables B1-B7

Monitoring Well Summary

City of Guelph

Clair - Maltby Master Environmental Servicing Plan (MESP) and Secondary Plan (SP)

	UTM NAD8	3 Zone 17N		Elevation ¹ (masl)					٦	Depth (mbgs	s)				
					Oct. 2016	Dec. 2016	Jan. 2017			Oct. 2016	Dec. 2016	Jan. 2017	Hydraulic		
Monitoring Well	Northing	Easting	Ground Surface	Top of Casing	Ground Water	Ground Water	Ground Water	Top of Screen	Base of Screen	Water	Water	Water	Conductivity (m/s)	Method	Stratigraphy of Screened Interval
MW01-D	4817765	566644	337.27	337.85	331.52	331.26	332.02	19.6	21.1	5.75	6.01	5.25	5.8E-07	BR	Clayey Silt (Till)
MW01-S	4817763	566642	337.20	337.71	331.72	331.51	332.25	11.9	13.4	5.48	5.69	4.95	2.1E-04	BR	Sand, Gravel
MW02-D	4817419	566681	335.29	336.11	331.32	331.12	331.93	18.9	20.4	3.98	4.17	3.37	1.5E-03	SG	Gravely Sand
MW02-S	4817425	566682	335.40	336.36	332.00	331.80	332.55	6.7	8.2	3.40	3.60	2.85	2.1E-03	SG	Sandy Gravel
MW03-D	4816950	568080	350.05	350.80	330.89	330.58	330.51	32.6	34.1	19.17	19.48	19.55	2.8E-04	BR	Sand, Gravel
MW03-S	4816949	568083	349.95	350.70	331.17	330.80	330.68	21.6	23.2	18.78	19.15	19.27	NA	SG	Sand
MW04-D	4816485	566169	349.60	350.47	334.60	334.43	334.89	26.8	28.3	15.00	15.17	14.71	2.2E-06	BR	Sandy Silt
MW04-S	4816488	566171	349.63	350.54	336.01	335.80	336.06	19.4	20.9	13.63	13.83	13.58	8.2E-08	KGS	Silt (Till)
MW05-D	4816337	567001	340.17	341.10	334.66	334.46	334.85	22.6	24.1	5.51	5.71	5.32	2.5E-04	KGS	Sand, Gravel
MW05-S	4816335	566999	340.16	341.11	335.07	334.86	335.30	15.2	16.8	5.09	5.31	4.86	5.4E-04	KGS	Sand, Gravel
MW06-D	4816250	567400	352.38	353.20	334.40	334.14	334.29	35.1	36.6	17.98	18.24	18.09	7.6E-06	KGS	Silty Sand
MW06-S	4816247	567401	352.41	353.34	334.71	334.42	334.42	21.4	22.9	17.69	17.99	17.98	5.4E-06	KGS	Silt and Sand
MW07-D	4815512	565479	347.04	347.89	329.61	329.31	329.44	33.1	34.6	17.43	17.73	17.60	4.8E-04	BR	Sand, Gravel
MW08-D	4815489	566248	338.48	339.45	330.90	330.57	330.52	17.7	19.2	7.58	7.91	7.96	2.3E-04	KGS	Sand, Gravel
MW08-S	4815494	566250	338.48	339.40	334.08	333.81	334.39	6.1	7.6	4.40	4.67	4.09	6.6E-04	KGS	Sand, Gravel
MW09-D	4815295	566970	350.51	351.15	331.14	330.81	330.74	32.0	33.5	19.37	19.69	19.77	7.2E-06	BR	Sandy Silt
MW09-S	4815292	566972	350.46	350.98	331.02	330.74	330.64	21.6	23.2	19.44	19.72	19.82	2.2E-04	KGS	Sand, Gravel
MW1-11*	4816210	565410	346.40	347.32	329.85	329.62	329.94	15.3 ^{AB}	18.3 ^{AB}	16.55	16.77	16.46			
MW2-11*	4816026	565434	343.36	344.37	329.91	329.67	329.89	12.0 ^{AB}	15.0 ^{AB}	13.45	13.69	13.47			
MW3-11*	4815829	565622	349.03	349.90	331.41	331.48	331.48	11.6 ^{AB}	17.8 ^{АВ}	17.62	17.56	17.55			

Notes:

- ¹ elevations are geodetic
- ^{AB} As reported by Aquifer Beach Ltd. (2012)
- * Pre-existing monitoring well at 132 Clair Road
- masl metres above sea level
- NA not available
- BR Bouwer and Rice method (1976)
- KGS Hyder et al method (1994)
- SG Springer-Gelhar (1991) Indicates an upward flow gradient at the well

Notes:

Water levels were recorded on the following dates: October 19, 20, 21, 2016 December 13, 2016 January 26, 2017

Mini Piezometer Summary

City of Guelph

Clair - Maltby Master Environmental Servicing Plan (MESP) and Secondary Plan (SP)

	UTM NAD8	3 Zone 17N		Elevation ¹ (masl)									
					Oct.	2016	Dec.	2016	Jan.	2017	Ground Surface		
Monitoring	Northing	Easting	Ground	Top of	Surface	Ground	Surface	Ground	Surface	Ground	to		
Well			Surface	Casing	Water	Water	Water	Water	Water	Water	Screen Base		
MP01-D	4816236	565484	341.95	342.86	dry	340.64	dry	340.77	342.11	341.30	1.99		
MP01-S	4816236	565484	341.95	342.78	dry	dry	dry	dry	342.12	341.83	1.15		
MP02	4816113	565844	345.90	347.16	dry	dry	dry	dry	346.18	345.58	1.04		
MP03	4816332	566274	347.42	348.28	dry	347.09	dry	347.23	347.55	347.52	1.44		
MP04	4816622	566419	339.30	340.33	dry	339.09	dry	339.25	339.67	339.66	1.27		
MP05	4815925	566681	337.70	338.36	dry	337.49	dry	337.64	338.13	338.13	1.64		
MP06	4816131	566973	337.39	338.24	dry	337.00	dry	337.02	337.73	337.69	1.45		
MP07-D	4816369	567115	337.26	338.37	dry	336.45	dry	336.75	337.43	336.82	2.42		
MP07-S	4816369	567115	337.29	338.22	dry	336.97	dry	336.96	337.38	337.32	1.37		
MP08	4816745	566739	337.40	338.72	337.38	337.28	337.40	337.29	337.68	337.67	0.98		
MP09-D	4817378	566708	333.14	334.00	dry	331.63	dry	331.92	332.99	332.26	2.04		
MP09-S	4817379	566707	333.14	334.30	dry	332.47	dry	332.45	332.99	332.33	1.14		
MP10	4815366	565340	330.11	331.58	NA	NA	dry	329.95	330.13	330.10	0.97		
MP11	4814531	566385	333.03	334.04	dry	332.98	333.19	333.16	333.33	333.33	1.29		
MP12	4816079	567796	334.34	335.61	NA	NA	dry	334.16	334.38	334.33	1.47		
MP13-D	4816631	568562	334.03	335.21	dry	333.29	333.99	333.38	334.30	333.99	2.17		
MP13-S	4816631	568563	334.07	335.04	dry	333.51	333.99	333.74	334.28	333.83	1.16		
MP14	4815633	568626	326.80	327.54	326.90	326.56	326.90	326.85	326.96	327.11	0.86		

Notes:

¹ - elevations are geodetic

masl - metres above sea level

- NA not available
 - Indicates an upward flow gradient in the GW system

- Indicates groundwater discharge to surface water

Notes:

Water levels were recorded on the following dates: October 20 and 21, 2016 December 13, 2016 January 26, 2017

Groundwater Quality Results - Field and Routine Parameters

City of Guelph Clair - Maltby Master Environmental Servicing Plan (MESP) and Secondary Plan (SP)

Sample Point		MW01-D	MW01-S	MW02-D	MW02-S	MW03-D	MW03-S	MW04-D	MW04-S	MW05-D	MW05-S	MW06-D	MW06-S	Ontario Drinking
Sample Date		20-Oct-16	19-Oct-16	19-Oct-16	19-Oct-16	19-Oct-16	Water Quality							
MSI Sample Number		23089161020003	23089161020004	23089161020002	23089161020001	23089161020005	23089161020006	23089161020008	23089161020007	23089161019007	23089161019006	23089161019004	23089161019005	Standards ⁺
Field Parameters		%		ų. V										
Field EC ²⁵	µS/cm	439	975	753	880	547	676	504	598	683	790	474	616	NS
Field DO [%]	% Saturation	71.3	70.1	15.4	19.1	22	54.2	23.1	45.6	15.1	22.2	25.3	33.3	NS
Field pH		7.2	7.5	7.3	7	8.1	7.7	8.2	8.3	7.4	7.3	8.1	8.2	6.5 - 8.5 ^{OG}
Field Temp	°C	10.4	11.4	10.5	12.4	8.4	8.8	8.7	9.3	9.9	9.8	10.4	10.8	15 ⁴⁰
Turbidity	NTU	269.2	224.1	136.7	122.6	449.7	1.000			856.7	478	185.8	973.5	5 ⁴⁰
Routine Potability				с										
Bicarbonate	mg/L	188	291	354	375	248	317	239	227	366	327	229	282	NS
Calcium	mg/L	20.7	87.8	97	98.3	57.9	80.5	41.9	53.2	94.3	105	50.9	69.2	NS
Carbonate	mg/L	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	NS
Chloride	mg/L	13.2	106	18.4	61.3	12.6	28.6	9.95	26.8	11.9	10	4.32	9.21	250 ⁴⁰
Lab EC	µS/cm	411	947	723	862	517	680	484	568	663	750	460	602	NS
Hydroxide	mg/L	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	NS
Ion Balance	%	104	100	106	101	103	106	103	102	101	112	112	108	NS
Iron	mg/L	<0.010	<0.010	0.452	1.2/	0.222	<0.010	0.288	<0.010	2.25	0.346	0.067	0.012	0.3
Magnesium	mg/L	19.3	29	26.7	25.1	25.4	28	26.6	25.4	27	35.8	20.8	29.7	NS 0.05 ^{AO}
Manganese	mg/L	0.0157	0.00157	0.157	0.459	0.0174	0.013	0.0135	0.0575	0.0829	0.159	0.0154	0.0453	0.05
Nitrate-N	mg/L	<0.10	2.12	<0.020	<0.020	<0.020	1.65	<0.020	<0.020	<0.020	0.429	<0.020	<0.020	10
Nitrite-N	mg/L	<0.050	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.028	<0.010	0.056	<0.010	<0.010	1
Lab pH	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	7.96	7.2	7.15	6.85	7.54	7.38	7.76	7.66	7.17	7.17	7.64	7.53	6.5 - 8.5
Potassium	mg/L	0.798	1.65	1.01	0.868	0.986	1.62	1.48	2.8	0.837	1.63	1.28	2.2	NS
Sodium	mg/L	33.7	49	8.9	32.8	4.38	13.7	13.5	18.5	4.71	5.53	15.1	13	200,00,00
Sulphate	mg/L	23.4	49.3	34.9	20.2	27.7	20.4	25.7	48.8	36	89.4	24.7	55.6	500 ⁴⁰
Temperature of sample upon receipt by lab	°C	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	8.7	8.7	8.7	8.7	NS
Total Alkalinity	mg/L	188	291	354	375	248	317	239	227	366	327	229	282	30 - 500
Total Dissolved Solids	mg/L	246	550	416	495	293	385	278	323	396	430	259	351	50040
Total Hardness	mg/L	131	339	352	349	249	316	214	237	347	410	213	295	80 - 100 ^{OG}
Total Kjeldahl Nitrogen	mg/L	0.67	0.43	0.44	0.48	0.23	<1.5	0.18	5	4.1	0.62	0.19	0.28	NS

Notes:

--- - not analyzed

NS - not specified

²⁵ - field EC corrected to 25°C

^{AO} - aesthetic objective

OG - operational guidelines

MAC - maximum acceptable concentration

NTU - nephelometric turbidity units

^{Na} - the local Medical Officer or Health should be notified when sodium concentrations exceeds 20 mg/L so that this information may be communicated to local physicians for their use with patients on sodium restricted diets

Groundwater Quality Results - Field and Routine Parameters

City of Guelph Clair - Maltby Master Environmental Servicing Plan (MESP) and Secondary Plan (SP)

Sample Point	MW07-D	MW08-D	MW08-S	MW09-D	MW09-S	Ontario Drinking	
Sample Date		19-Oct-16	19-Oct-16	19-Oct-16	21-Oct-16	21-Oct-16	Water Quality
MSI Sample Number	23089161019001	23089161019002	23089161019003	23089161021001	23089161021002	Standards ⁺	
Field Parameters	2						
Field EC ²⁵	µS/cm	709	1188	597	486	635	NS
Field DO [%]	% Saturation	42.7	35	22.6	30	69.1	NS
Field pH		7.4	7	7.3	8.4	7.8	6.5 - 8.5 ^{OG}
Field Temp	°C	10.1	10.3	11.9	8.5	8.4	15 ⁴⁰
Turbidity	NTU	428	>1100	727.8		0.000	5 ^{AO}
Routine Potability							
Bicarbonate	mg/L	276	336	288	237	260	NS
Calcium	mg/L	79.3	105	77.7	54.4	89.3	NS
Carbonate	mg/L	<10	<10	<10	<10	<10	NS
Chloride	mg/L	39.6	189	14.4	2.79	14.1	250 ⁴⁰
Lab EC	µS/cm	696	1180	569	445	583	NS
Hydroxide	mg/L	<10	<10	<10	<10	<10	NS
Ion Balance	%	109	101	112	123	121	NS
Iron	mg/L	0.024	<0.010	<0.010	0.024	<0.010	0.340
Magnesium	mg/L	30.7	30.5	22.8	22.3	23.4	NS
Manganese	mg/L	0.0787	0.0434	0.00707	0.0367	0.00469	0.05 ^{AO}
Nitrate-N	mg/L	0.318	1.49	1.04	< 0.020	7	10 ^{MAC}
Nitrite-N	mg/L	0.028	<0.050	< 0.010	<0.010	<0.010	1 ^{MAC}
Lab pH		7.44	7.23	7.25	7.56	7.28	6.5 - 8.5 ^{OG}
Potassium	mg/L	1.55	3.18	1.29	1.08	3.34	NS
Sodium	mg/L	17.1	88.3	4.17	12.1	4.69	200 ^{AO,Na}
Sulphate	mg/L	47.4	32	4.79	7.88	16.9	500 ^{AO}
Temperature of sample upon receipt by lab	°C	8.7	8.7	8.7	12	12	NS
Total Alkalinity	mg/L	276	336	288	237	260	30 - 500 ^{OG}
Total Dissolved Solids	mg/L	386	639	295	272	346	500 ^{AO}
Total Hardness	mg/L	325	388	288	228	319	80 - 100 ^{OG}
Total Kjeldahl Nitrogen	mg/L	<0.15	0.51	0.76	0.48	1.91	NS

Notes:

--- - not analyzed

NS - not specified

²⁵ - field EC corrected to 25°C

AO - aesthetic objective

OG - operational guidelines

MAC - maximum acceptable concentration

NTU - nephelometric turbidity units

^{Na} - the local Medical Officer or Health should be notified when sodium concentrations exceeds 20 mg/L so that this information may be communicated to local physicians for their use with patients on sodium restricted diets

Matrix Solutions Inc.

Groundwater Quality Results - Dissolved Metals

City of Guelph

Clair - Maltby Master Environmental Servicing Plan (MESP) and Secondary Plan (SP)

Sample Point		MW01-D	MW01-S	MW02-D	MW02-S	MW03-D	MW03-S	MW04-D	MW04-S	MW05-D	MW05-S	MW06-D	MW06-S	Ontario Drinking
Sample Date		20-Oct-16	20-Oct-16	20-Oct-16	20-Oct-16	20-Oct-16	20-Oct-16	20-Oct-16	20-Oct-16	19-Oct-16	19-Oct-16	19-Oct-16	19-Oct-16	Water Quality
MSI Sample Number		23089161020003	23089161020004	23089161020002	23089161020001	23089161020005	23089161020006	23089161020008	23089161020007	23089161019007	23089161019006	23089161019004	23089161019005	Standards ⁺
Silver (Ag)	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	NS
Aluminum (Al)	mg/L	0.007	<0.0050	<0.0050	0.0064	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	0.1 ^{0G}
Arsenic (As)	mg/L	0.00763	0.00012	0.0104	0.023	0.00238	0.00019	0.00812	0.0003	0.0008	0.00333	0.00166	0.00104	0.025 ^{IMAC}
Boron (B)	mg/L	0.078	0.021	0.015	0.028	<0.010	0.011	0.015	0.018	<0.010	<0.010	0.012	0.014	5 ^{IMAC}
Barium (Ba)	mg/L	0.0345	0.0573	0.0901	0.0647	0.0806	0.0832	0.0637	0.0793	0.145	0.126	0.121	0.124	1 ^{MAC}
Beryllium (Be)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	NS
Bismuth (Bi)	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	NS
Cadmium (Cd)	mg/L	<0.000010	0.000195	<0.000010	<0.000010	<0.000010	0.000064	<0.000010	<0.000010	<0.000010	0.000019	<0.000010	<0.000010	0.005 ^{MAC}
Cesium (Cs)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	0.000011	<0.000010	<0.000010	<0.000010	NS
Cobalt (Co)	mg/L	0.00022	<0.00010	0.00137	0.003	0.00013	<0.00010	<0.00010	0.00023	0.00011	0.00092	0.00013	0.0002	NS
Chromium (Cr)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.05 ^{MAC}
Copper (Cu)	mg/L	0.00059	0.00129	0.00056	0.00056	0.00032	0.00081	0.00033	0.00037	<0.00020	0.00046	0.00037	0.00046	1 ^{AO}
Lithium (Li)	mg/L	0.0016	0.0016	0.0017	0.0014	0.0023	<0.0010	0.0029	<0.0010	0.0018	0.0043	0.0027	0.0017	NS
Molybdenum (Mo)	mg/L	0.00453	0.000284	0.00136	0.00192	0.000905	0.000447	0.00315	0.0066	0.000176	0.0235	0.0023	0.00323	NS
Nickel (Ni)	mg/L	0.00152	0.00082	0.00619	0.0126	<0.00050	0.00083	<0.00050	0.00647	0.0009	0.00372	<0.00050	<0.00050	NS
Phosphorus (P)	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	NS
Lead (Pb)	mg/L	<0.000050	0.00018	0.000163	0.000266	<0.000050	0.000158	<0.000050	<0.000050	<0.000050	0.000154	<0.000050	<0.000050	0.01 ^{MAC,Pb}
Rubidium (Rb)	mg/L	0.00082	0.0026	0.00129	0.00182	0.00056	0.00205	0.00062	0.00208	0.00075	0.0024	0.00075	0.00159	NS
Sulfur (S)	mg/L	7.99	16.5	11.2	6.4	8.95	6.67	8.32	15.5	11.6	31	8.63	18.1	NS
Antimony (Sb)	mg/L	0.00024	<0.00010	0.00046	0.00049	<0.00010	<0.00010	<0.00010	0.0004	<0.00010	0.00041	<0.00010	0.0003	0.006 ^{IMAC}
Selenium (Se)	mg/L	<0.000050	0.000229	<0.000050	0.000151	<0.000050	0.000258	<0.000050	0.000206	<0.000050	0.000167	<0.000050	0.000053	0.01 ^{MAC}
Silicon (Si)	mg/L	4.6	4	5.6	3.84	6.41	5.02	8.69	5.85	9.08	4.01	6.43	4.2	NS
Tin (Sn)	mg/L	0.00014	<0.00010	<0.00010	<0.00010	0.00012	<0.00010	0.00013	0.0007	<0.00010	<0.00010	0.00016	0.00061	NS
Strontium (Sr)	mg/L	0.314	0.326	0.142	0.144	0.109	0.11	0.158	0.256	0.135	0.143	0.123	0.256	NS
	mg/L	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	NS
I norium (I n)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	< 0.00010	<0.00010	<0.00010	<0.00010	NS
Thallium (TI)	mg/L	<0.00030	< 0.00030	<0.00030	<0.00040	<0.00030	< 0.00030	<0.00030	< 0.00030	0.00038	< 0.00030	<0.00030	< 0.00030	NG
	mg/L	<0.000010	0.000021	<0.000010			0.000024		0.000014		0.00002	<0.000010		
Vanadium (U)	mg/L	0.00232	0.000609	0.00469	0.00901	0.00149	0.00102	0.00112	0.00240	0.000113	0.024	0.00202	0.00545	0.02
	mg/L	0.001	<0.00050	<0.00050	0.00120	<0.00050	<0.00050	<0.00050	<0.00050	0.00062	<0.00050	<0.00050	< 0.00050	NO
$Z_{inc}(Z_n)$	mg/L	<0.00010 0.0042	0.111	0.00010	~0.00010 0.183	0.00010	0.00010	0.00010	0.00010	0.00010	0.00010	~0.00010 0.0038	0.00010	EAO
ZING (ZN) Zirconium (Zr)	mg/L		<0.00030		0.105	<0.00030	~0.0040	<0.0272	<0.0039	0.0019	<0.0270	<0.0030	<0.0009	D NG
	mg/L	NUUUUUU	NUUUUUU	NUUUUUU	0.00055	NUUUUUU	NUUUUUU	NUUUUUU	NUUUUUU	0.00031	\U.UUU3U	NUUUUUU	NUUUUUU	ing.

Notes:

--- - not analyzed

NS - not specified ^{AO} - aesthetic objective from Guidelines for Canadian Drinking Water Quality-Summary Table (Health Canada 2017)

^{OG} - operational guidelines

MAC - maximum acceptable concentration from Guidelines for Canadian Drinking Water Quality-Summary Table (Health Canada 2017)

IMAC - interim maximum acceptable concentration

Pb - standard applies to water at the point of consumption. Since lead is a component in some plumbing

systems,

⁺ - Technical Support Document for Ontario Drinking Water Quality Standards, Objectives and Guidelines (MOE 2006)

Groundwater Quality Results - Dissolved Metals

City of Guelph

Clair - Maltby Master Environmental Servicing Plan (MESP) and Secondary Plan (SP)

Sample Point		MW07-D	MW08-D	MW08-S	MW09-D	MW09-S	Ontario Drinking
Sample Date		19-Oct-16	19-Oct-16	19-Oct-16	21-Oct-16	21-Oct-16	Water Quality
MSI Sample Number		23089161019001	23089161019002	23089161019003	23089161021001	23089161021002	Standards ⁺
Silver (Ag)	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	NS
Aluminum (Al)	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.1 ^{0G}
Arsenic (As)	mg/L	0.00037	<0.00010	0.00028	0.0039	0.00012	0.025 ^{IMAC}
Boron (B)	mg/L	<0.010	0.013	0.011	0.017	0.012	5 ^{IMAC}
Barium (Ba)	mg/L	0.127	0.144	0.0167	0.0908	0.0869	1 ^{MAC}
Beryllium (Be)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	NS
Bismuth (Bi)	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	NS
Cadmium (Cd)	mg/L	0.000015	0.000067	0.000043	0.000019	0.000036	0.005 ^{MAC}
Cesium (Cs)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	NS
Cobalt (Co)	mg/L	0.00062	0.00085	0.00018	0.00023	<0.00010	NS
Chromium (Cr)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.05 ^{MAC}
Copper (Cu)	mg/L	0.00103	0.00201	0.00158	0.00054	0.00112	1 ^{AO}
Lithium (Li)	mg/L	0.0032	0.0034	<0.0010	0.0027	<0.0010	NS
Molybdenum (Mo)	mg/L	0.00118	0.000662	0.000655	0.00634	0.000203	NS
Nickel (Ni)	mg/L	0.00174	0.0031	0.00945	0.00068	< 0.00050	NS
Phosphorus (P)	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	NS
Lead (Pb)	mg/L	0.000155	0.000614	0.000051	0.000113	0.00006	0.01 ^{MAC,Pb}
Rubidium (Rb)	mg/L	0.00127	0.00225	0.00069	0.00167	0.00047	NS
Sulfur (S)	mg/L	15.5	10.9	1.48	2.24	5.6	NS
Antimony (Sb)	mg/L	0.00017	0.00012	0.00036	0.00013	<0.00010	0.006 ^{IMAC}
Selenium (Se)	mg/L	0.000098	0.000251	0.000132	<0.000050	0.000314	0.01 ^{MAC}
Silicon (Si)	mg/L	6.12	5.51	3.66	7.26	4.43	NS
Tin (Sn)	mg/L	0.00055	<0.00010	0.00123	0.00027	0.00027	NS
Strontium (Sr)	mg/L	0.114	0.18	0.115	0.166	0.0948	NS
Tellurium (Te)	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	NS
Thorium (Th)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	NS
Titanium (Ti)	mg/L	<0.00030	<0.00030	< 0.00030	<0.00030	< 0.00030	NS
I hallium (11)	mg/L	0.000018	0.000048	<0.000010	0.00002	< 0.000010	NS
Uranium (U)	mg/L	0.00148	0.000649	0.000231	0.00104	0.000262	0.02 ^{MAC}
Vanadium (V)	mg/L	< 0.00050	< 0.00050	< 0.00050	<0.00050	< 0.00050	NS
lungsten (VV)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	NS
Zinc (Zn)	mg/L	0.0149	0.192	0.0101	0.0146	0.0604	5~~
∠irconium (∠r)	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	NS
		1					

Notes:

--- - not analyzed

NS - not specified ^{AO} - aesthetic objective from Guidelines for Canadian Drinking Water Quality-Summary Table (Health Canada 2017)

^{OG} - operational guidelines

MAC - maximum acceptable concentration from Guidelines for Canadian Drinking Water Quality-Summary Table (Health Canada 2017)

IMAC - interim maximum acceptable concentration

Pb - standard applies to water at the point of consumption. Since lead is a component in some plumbing

systems,

* - Technical Support Document for Ontario Drinking Water Quality Standards, Objectives and Guidelines (MOE 2006)

Groundwater Quality Results - Enriched Tritium City of Guelph Clair - Maltby Master Environmental Servicing Plan (MESP) and Secondary Plan (SP)

Sample Point	Sample Date	MSI Sample Number	³ H Tritium TU
MW03-S	28-Oct-16	23089161028003	13.10
MW05-S	28-Oct-16	23089161028001	10.90
MW05-D	28-Oct-16	23089161028002	10.10
MW07-D	28-Oct-16	23089161028004	6.40
Minimal Dete	0.80		

Notes:

1TU = 0.11919 Becquerels/L per IAEA, 2000 Report.

Guelph Permeameter Testing Results City of Guelph Clair - Maltby Master Environmental Servicing Plan (MESP) and Secondary Plan (SP)

			Soil Ir	nterval		Field Saturated Soil		
Location ID	Adjacent MW Nest	Date	Top (mbgs)	Bottom (mbgs)	Soil Description*	Hydraulic Conductivity (m/s)		
GP01	MW01	2-Nov-16	0.00	0.19	Clayey Silt, some gravel to cobbles, trace sand	3.7E-06		
GP02	MM/02	2-Nov-16	0.00	0.00 0.22 Silty Clay, trace sand and gravel				
01.02	1010002	2-1100-10	0.22	0.41	Clayey Silt, some sand, trace gravel	4.4∟-00		
GP03	MW03	2-Nov-16	0.00	0.22	Clayey Silt, organics	1 6E-06		
01.02	1010000	2-1100-10	0.22	0.34	Very Fine Sand, some silt	1.00-00		
GP04 MW04		1 Nov 16	0.00 0.19 Clayey Silt, trace sand and gravel		Clayey Silt, trace sand and gravel	3 4E-07		
		1-1100-10	0.19	0.30	Fine Sandy Silt, trace clay and gravel	0.40		
GP05 MW05		1-Nov-16	6 0.00 0.20 Silty Sand		Silty Sand	2 7E-07		
		1-1100-10	0.20	0.35	Silty Sand, trace gravel	2.1 ⊑=01		
			0.00	0.10	Silty Clay, organics			
GP06	MW06	1-Nov-16	0.10	0.20	Clayey Silt, trace sand	2.6E-07		
			0.20	0.33	Silty Clay, trace sand			
GP07		1 Nov 16	0.00	0.00 0.20 Silty Sand, trace gravel, organics		1.65.06		
		1-1100-10	0.20 0.30		Fine Sand, trace silt	1.00-00		
GP08	MW08	2-Nov-16	0.00	0.33	Clayey Silt, trace sand	6.9E-08		
GP09	MW09	2-Nov-16	0.00	0.28	Clayey Silt, trace sand and gravel, organics, worms	1.2E-05		

Notes:

* - Soil description of hand-augered, near surface soil

Surface Water Spot Flow Results

City of Guelph

Clair - Maltby Master Environmental Servicing Plan (MESP) and Secondary Plan (SP)

		UTM NAD83 Zone 17N		Spot Flows												
Spot Flow Location Subwatershed				Summer 2016								Fall 2016				
		Northing	Easting	Aug. 30		Aug. 31		Sep. 1		Flow	N	lov. 9	N	ov. 10	Elow	
				Flow	SW Temp	Flow	SW Temp	Flow	SW Temp	Method	Flow	SW Temp	Flow	SW Temp	Method	
				(L/s)	°C	(L/s)	°C	(L/s)	°C		(L/s)	O°	(L/s)	°C		
HC-HR1	Hanlon Creek	4817074	562217			63.3	18.1			FT			59.9	6.3	FT	
HC-HR2	Hanlon Creek	4816810	562558			0.0				V			0.0		V	
HC-HR3	Hanlon Creek	4816866	562652					2.1		L			2.6	10.2	FT	
HC-T1	Hanlon Creek	4816367	562118					14.0	17	FT			11.6	6.3	FT	
LSR-D2	Hanlon Creek	4814794	562355					0.0		V			0.0		V	
LSR-L1	Lower Speed River	4815033	561481			0.0				V			0.0		V	
LSR-P1	Lower Speed River	4815726	560821					0.1		В			0.1		В	
LSR-P2	Lower Speed River	4816066	560757					0.0		V			0.0		V	
LSR-P3	Lower Speed River	4816551	560703					0.1		V			0.3		В	
MC-C71	Mill Creek	4812339	566992			0.0				V	0.0				V	
MC-C72	Mill Creek	4812723	566606			0.0				V	0.8				L	
MC-G1	Mill Creek	4813575	569960	36.9	15.2					FT	43.4	7.6			FT	
MC-GN1	Mill Creek	4814253	568042	1.9	21.5					FT	4.7	8.3			FT	
MC-GN2	Mill Creek	4814342	567968	1.9						В	2.4				В	
MC-GN3	Mill Creek	4813648	568576			73.8	16.9			FT	58.2	8.4			FT	
MC-GN4	Mill Creek	4813263	569173			105.7	23.9			FT	111.4	8.7			FT	
MC-M2	Mill Creek	4818016	569639										0.0		V	
MC-M3	Mill Creek	4814352	566152			0.0				V	0.0				V	
MC-SR1	Mill Creek	4811552	567674			174.3	21.9			FT	187.2	8.1			FT	
MC-V1	Mill Creek	4813756	571458	16.5	16.4					FT	12.0	7.4			FT	
MC-V2	Mill Creek	4815732	569467	11.2	20.9					FT	5.8	8.0			FT	
MC-W2	Mill Creek	4817137	571205	8.3						FT			5.6	6.3	FT	
MC-WL3	Mill Creek	4813824	568493	76.9	17.9					FT	65.8	8.0			FT	
MC-WL4	Mill Creek	4813565	568249			8.4	18.8			FT	13.5	8.1			FT	
TC-C1	Torrance Creek	4820979	565613										0.0		V	
TC-V1	Torrance Creek	4820265	564884										4.0	3.4	FT	
TC-V2	Torrance Creek	4820648	564494										0.0		V	

Notes:

--- - not recorded

FT - Son-Tek FlowTracker

L - Measured leaf velocity and multiplied by simplified cross-sectional area to estimate discharge

B - Discharge collected in a bucket over a measured amount of time

V - Visual estimate

